当前位置:文档之家› 飞思卡尔单片机AD转换模块简介

飞思卡尔单片机AD转换模块简介

A/D转换模块
1、A/D转换原理
A/D转换的过程是模拟信号依次通过取样、保持和量化、编码几个过程后转换为数字格式。

a)取样与保持
一般取样与保持过程是同时完成的,取样-保持电路的原理图如图16
所示,由输入放大器A
1、输出放大器A
2
、保持电容C
H
和电子开关S组成,
要求 A
V1 * A
V2
= 1。

原理是:当开关S闭合时,电路处于取样阶段,电容
器充电,由于 A
V1 * A
V2
= 1,所以输出等于输入;当开关S断开时,由于
A 2输入阻抗较大而且开关理想,可认为C
H
没有放电回路,输出电压保持不
变。

图16 取样-保持电路
取样-保持以均匀间隔对模拟信号进行抽样,并且在每个抽样运算后在足够的时间内保持抽样值恒定,以保证输出值可以被A/D 转换器精确转换。

b)量化与编码
量化的方法,一般有舍尾取整法和四舍五入法,过程是先取顶量化单位Δ,量化单位取值越小,量化误差的绝对值就越小,具体过程在这里就不做介绍了。

将量化后的结果用二进制码表示叫做编码。

2、A/D转换器的技术指标
a)分辨率
分辨率说明A/D转换器对输入信号的分辨能力,理论上,n位A/D转换器能区分的输入电压的最小值为满量程的
1/2n 。

也就是说,在参考电压一定时,输出位数越多,量化单位就越小,分辨率就越高。

S12的ATD模块中,若输出设置为8位的话,那么转换器能区分的输入信号最小电压为19.53mV。

b)转换时间
A/D转换器按其工作原理可以分为并联比较型(转换速度快ns级)、逐次逼近型(转换速度适中us级)、双积分型(速度慢抗干扰能力强)。

不同类型的转化的A/D转换器转换时间不尽相同,S12的ATD模块中,8位数字量转换时间仅有6us,10位数字量转换时间仅有7us。

S12内置了2组10位/8位的A/D模块:ATD0和ATD1,共有16个模拟量输入通道,属于逐次逼近型A/D转换器(这个转换过程与用天平称物的原理相似)。

1、功能结构图
图17 A/D 模块功能结构图
图17所示的是A/D 模块的功能结构,这个功能模块被虚线划分成为图示所示的虚线所隔离的三个部分:IP 总线接口、转换模式控制/寄存器列表,自定义模拟量。

IP 总线接口负责该模块与总线的连接,实现A/D 模块和通用I/O 的目的,还起到分频的作用;
转换模式控制寄存器列表中有控制该模块的所有的寄存器,执行左右对齐运行和连续扫描。

自定义模拟量负责实现模拟量到数字量的转换。

包括了执行一次简单转换所需的模拟量和数字量。

2、HCS12中A/D转化模块特点
8/10 位精度;7 us, 10-位单次转换时间.;采样缓冲放大器;可编程采样时间;左/右对齐, 有符号/无符号结果数据;外部触发控制;转换完成中断;模拟输入8 通道复用;模拟/数字输入引脚复用;1 到8转换序列长度;连续转换模式;多通道扫描方式。

ATD 模块有模拟量前端、模拟量转换、控制部分及结果存储等四部分组成。

其中模拟前端包括多路转换开关、采样缓冲器、放大器等,结果存储部分主要有8个16 位的存储器和反映工作状态的若干标志位。

相关主题