细菌耐药机制研究进展
主要由克雷伯菌和大肠埃希菌产生
部分由粘质沙雷菌、弗劳地枸橼酸菌、阴沟肠杆菌 铜绿假单胞菌产生
经质粒介导,由普通的内酰胺酶基因 (TEM-1、 TEM-2、SHV-1)突变而来,能水解-内酰胺抗生素 临床对内酰胺类耐药,呈多重耐药
对碳青霉烯类和头霉烯类敏感,对酶抑制剂敏感
举 例
1.妥布霉素+替卡西林(或哌拉西林、美洛西 林及其复方);
2.妥布霉素+头孢他啶(或哌酮); 3.氨基糖苷类+亚胺培南(或美洛培南)、或 氨曲南。
合理用药的四个前提条件
一、掌握抗菌药物的药代动力学与药效学 二、揭示感染部位、范围及其病原体,以 及病原体对相关抗菌药物的敏感情况 三、明确感染者的生理学特点、病理学特 点以及免疫状况 四、理解有关法律、法规、规范与制度
•MRSA传播 主要通过医护人员的手, 在患者、医护人员、患者 间播散,另外,衣物、敷 料等物品可携带MRSA, 促进MRSA在院内的流行 病人一旦感染或携带 MRSA,该菌可存在于患 者身上达数月之久。
耐甲氧西林葡萄球菌
• 最有效药物是糖肽类,如万古、去甲万古、 替考拉宁、利奈唑胺 • 如严重感染(败血症、心内膜炎),联用 利福平,优点:它能穿透葡萄球菌形成的 生物膜,加之渗透性好,可提高其杀菌活 性; • 联用磷霉素(它干扰细菌细胞壁合成第一 步,万古为干扰其第二步)或阿米卡星
嗜麦芽窄食单胞菌感染
替卡西林/克拉维酸与氨曲南联用,有 协同作用,但未见联用报道。
新喹诺酮类(如左氧氟沙星、加 替沙星),可试用于复方新诺明失败或 不适合应用的病例。成功与治疗者均有 报道。
多种机制耐药的处理
• 碳青霉烯类耐药机制,往往是几种机制共同 作用的结果。 金属β-内酰胺酶
其它β-内酰胺酶(包括2f类酶及OXA型酶)
对耐亚胺培南者可选此类药物治疗
• 亦可视药敏选用多粘菌素B或粘菌素
治 疗
• 首选 亚胺培南或美洛培南、氨苄西林-舒
巴坦、 氟喹诺酮类加阿米卡星 • 备选 头孢他啶 头孢吡肟 哌拉西林及其复方 氨曲南 四环素 多粘菌素
嗜麦芽窄食单胞菌感染
• 首选 复方新诺明 • 候选 替卡西林-克拉维酸 氨曲南
环丙沙星
细菌耐药
• 固有耐药(intrinsic resistance) ——细菌染色体决定,代代相传的天然耐 药。 • 获得耐药(acquired resistance) ——细菌在接触抗生素后,改变代谢途径, 使自身对抗生素或抗菌药有不被杀灭的抵 抗力。
细菌耐药
• 耐药机制: 1)产生灭活酶,改变抗生素结构。 2)改变靶位蛋白。 3)降低抗生素在菌体内积聚。 a 改变外膜通透性。 b 增强外流(efflux),使进入菌体内 抗生素迅速外流。
• 严重感染:美罗培南,亚胺培南
• 三代头孢菌素、头霉素类、阿米卡星和 环丙不适于产ESBLs菌株感染的治疗, 尤其是环丙,除非药敏证明是敏感的
AmpC酶及耐药特点
(1)AmpC酶 由ampC基因编码产生
(2)ampC基因表达同时受ampD,ampR,
ampG等多种基因调控,是头孢菌素酶的代
表酶 (3)属于染色体Bush1型酶或Ambler C 类酶
耐药株不动杆菌感染
鲍曼不动杆菌是VAP最常见的病原菌之一。 • 亚胺培南的抗菌活性最强,优于美洛培南 • 羧苄西林+阿米卡星 • 亚胺培南或ß-内酰胺类的复方制剂+氨基糖 苷类 • 氟喹诺酮类+阿米卡星 以上组合均有协同作用
耐药株不动杆菌感染
• 头孢哌酮-舒巴坦(舒普深)或氨苄西林舒巴坦对此菌亦有高度抗菌活性
耐药株大肠埃希菌、肺炎克雷伯菌 的治疗
1. 碳青霉素烯类 2. 哌拉西林-他唑巴坦(大剂量) 3. 头孢哌酮-舒巴坦
产AmpC的细菌感染 (见于肠杆菌属及铜绿菌等)
• 对三代头孢的复合剂(舒普深)耐药 • 对头孢西丁、氨基糖苷类耐药 • 可选用第四代头孢菌素,如头孢吡肟 碳青霉烯类 氟喹诺酮类,如环丙沙星 氨基糖苷类
G-
G+
L 产 ESBL 的
大肠杆菌,肺炎克雷 伯菌 等
高产 AMP C 酶的 肠杆菌属菌,枸橼 酸菌,沙雷氏菌 酸菌,沙雷氏菌等
MRSA
VRE
PRSP
对第三代,及第 四代头孢菌素等 耐药
碳青霉烯类抗生素
对第三代头孢菌素及 酶抑制剂复合制剂
耐药
碳青霉烯类抗生素, 第四代头孢菌素 万古霉素
细菌耐药的主要机制
• 耐万古霉素株(有多种基因决定): 替考拉宁(单用)或与亚胺培南联用, 或链阳霉素(streptogramin) • 多重耐药株亦可用链阳霉素
耐药株大肠埃希菌、 肺炎克雷伯菌感染
• 两菌是产ESBLS最常见的细菌 • 两菌中,也有产非诱导性AmpC内酰胺 酶 • 少数菌可同时产上述两种酶
• 携带ESBL基因的质粒上还可同时携带氨 基糖苷类与喹诺酮类的耐药基因
AmpC酶及耐药特点
• • • • • • • AmpC酶水解以下抗生素: 青霉素类 耐药 头霉素类 耐药 1,2,3代头孢菌素类 耐药 单环类 耐药 加酶抑制剂复合药 耐药 可分为诱导型,结构型和质粒型。
耐甲氧西林金葡菌感染MRSA
• MRSA多发于:
免疫缺陷者
大面积烧伤
大手术后患者
长期住院及老年患者 • MRSA极易导致感 染的流行和暴发
抗生素的给药方法
• 浓度依赖性抗生素:(时间依赖性抗菌药物(杀菌作用非浓
度依赖,无PAE或很短) 青霉素类,第一、二、三代头孢菌素类及氨曲南等缩短间隔,尽量延 长血药浓度超过MIC的时间浓度依赖性抗菌药物
β-内酰胺类作用机制
通过干扰细菌细胞壁的合成而产生抗 菌作用。细菌的细胞膜上具有青霉素结合 蛋白(PBPs),与β -内酰胺类具高度亲 和力,二者紧密结合后则干扰细菌细胞壁 合成代谢,使细菌形态变化而溶解死亡
常见耐药菌感染的治疗现状
当前院内感染面临的耐药菌
G+球菌
MRSA(耐甲氧西林金黄色葡萄球菌) MRCNS(耐甲氧西林凝固酶阴性葡萄 球菌) VRE(耐万古霉素肠球菌)
ESBLs的靶抗生素
头孢泊肟(cefpodoxime)(CPD)
头孢他啶(ceftazidime)(CAZ)
头孢噻肟(cefotaxime)(CTX)
头孢曲松(ceftriaxone)(CRO)
氨曲南 (aztreonam)(ATM)
产ESBLS的可能原因
1.与应用三代头孢菌素过多有关 (尤其是头孢他啶,还有头孢曲松、噻肟) 2.与病人免疫功能有关 • 中性粒细胞减少者(尤其是儿童) • 肿瘤病人(放、化疗) • 慢性病病人 • 住院较久者 • 长期预防性用药者
耐药株铜绿假单胞菌感染
• 抗假单胞菌ß-内酰胺类
Hale Waihona Puke 哌拉西林及其复方头孢哌酮及其复方
头孢他啶、头孢吡肟、氨曲南
亚胺培南、美洛培南
• 喹诺酮类
• 氨基糖苷类
• 粘菌素类
存在高耐药可能性的药物
• 环丙沙星
• 庆大、妥布霉素 • 头孢他啶 • 亚胺培南
存在低耐药可能性的药物
哌拉西林或替卡西林及其复方 • 阿米卡星、奈替米星、妥布霉素 • 头孢哌酮 • 头孢吡肟 • 美洛培南 • 多粘菌素B
• 耐药金葡(MRSA): PBP2a
2018/6/22
内酰胺酶 --- 最主要的灭活酶
1.内酰胺酶是微生物所产生破坏青霉素类 头孢菌素类等活性的物质,包括所有β-内 酰胺酶,如广谱β-内酰胺酶、AmpC酶、 超广谱β-内酰胺酶,金属β-内酰胺酶等, 目前已发现300多种 2. 细菌产生内酰胺酶是细菌对内酰胺类
孔蛋白改变 主动外排
10% 15% 45%
灭活酶产生
15%
其他机制…
15%
靶点改变
细胞膜通透性的改变 细菌内靶位结构的改变
外排作用
细菌耐药的主要机制
钝化酶
水解酶 旁路作用
灭活酶
外排泵作用:假单胞菌耐药机制之一
美罗培南被 外排泵排出, 而亚胺培南 未被排出 外排泵 排出通道 (OprM)
亚胺培南 和 美罗培南 在此进入
革兰阳性菌的结构
肽糖层
B内酰胺酶
细胞浆膜层
青霉素结合蛋白 β-内酰胺类抗生素
Porin通道
革兰阴性菌的结构
细胞壁
B内酰胺酶
肽糖层
青霉素结合蛋白 β-内酰胺类抗生素
细胞膜层
广谱内酰胺酶
广谱酶(TEM-1,TEM-2,SHV-1)主要灭活青
霉素和 一、二代头孢 对三代头孢菌素无水解作用
超广谱内酰胺酶 (ESBLs)
ESBLs的辩认: 耐药性特点
肠杆菌科细菌尤其大肠,克雷伯菌 对一个或多个三代头孢敏感性下降 常伴有氨基甙,喹诺酮协同耐药 头孢呋新耐药 酶抑制剂,头孢西丁部分有效 亚胺培南敏感 临床治疗效果不好
ESBLs的治疗对策(1)
(1) 三代头孢菌素:CTX和CAZ耐药率高
(2) 四代头孢菌素:耐药率不很高,对部分 ESBLs稳定 (3)头霉素有效,但MIC90值为 ≥256g/ml, 耐药率为16%,可能是由于细菌外膜孔蛋 白的缺失造成的 (4) 泰能是目前对产ESBLs细菌最有效的内 酰胺抗菌药物
当前世界十大耐药问题
• • • • • • • • • • 1. MRSA; MRSE; MRCNS. 2. 耐万古霉素的肠球菌(VRE) 3. 耐克林霉素和头孢菌素的厌氧菌. 4. 氨苄耐药的流感嗜血杆菌. 5. 青霉素耐药奈瑟氏菌. 6. 青霉素耐药肺炎球菌(PRP) 7. 多重耐药结核菌(MDR-TB) 8. 产ESBL大肠杆菌和克雷伯菌. 9.产AmpC酶肠杆菌、枸橼酸杆菌、沙雷氏菌。 10. 多重耐药非发酵菌:绿脓、不动、嗜麦芽