当前位置:
文档之家› 人教版化学选修三2.3分子的性质 课件 最新课件
人教版化学选修三2.3分子的性质 课件 最新课件
由分子构成的
化学键与范德华力的比较
化学键
范德华力
概念 使原子相结合的 把分子聚集在
相互作用
一起的作用力
存在范围 分子内、原子间
作用力强 弱
较
强
影响的性 质
主要影响 化学性质
分子之间
与化学键相比 弱的多
主要影响物理性 质(如熔沸点)
二、范德华力及其对物质性质的影响
(1)范德华力大小
分子
HCl
HBr
81 23.11
128 26.00
结构相似,相对分子质量越大,范德 华力越大
二、范德华力及其对物质性质的影响
(3)范德华力与分子的极性的关系
分子 相对分 分子的 范德华力 子质量 极性 (kJ/mol)
CO
28
极性
8.75
Ar
40 非极性 8.50
相对分子质量相同或相近时,分子的极性越 大,范德华力越大
O
C=O键是极性键,但
从分子总体而言CO2 是直线型分子,两个
C=O键是对称排列的,
两键的极性互相抵消
F2
( F合=0),∴整个 分子没有极性,电荷
分布均匀,是非极性
分子
H H
O
F合≠0
O-H键是极性键,共用电
子对偏O原子,由于分子
是折线型构型,两个O-H 键的极性不能抵消( F合
F1
≠0),∴整个分子电荷分
小结:
键的极性 键角 决定 分子的空
间结构
决定 分子的 极性
键的极性与分子极性的关 系
A、都是由非极性键构成的分子一般是非极 性分子。
B、极性键结合形成的双原子分子一定为极 性分子。
C、极性键结合形成的多原子分子,可能为 非极性分子,也可能为极性分子。
D、多原子分子的极性,应有键的极性和分 子的空间构型共同来决定。
4.键参数:键长指X和Y的距离 键能指X—H…Y分解为X—H 和Y所需要的能
量
为什么冰会浮 在水面上呢?
5.特征: 具有方向性, 具有饱和性。
氢键对物质性质的影响 分子间氢键
O
O
N
H
O
1.类型 分子内氢键
邻硝基苯酚中的分子内氢键
2、对性质的影响:
熔沸点:(1)分子间氢键:升高
(2)分子内氢键:降低
氢键及其形成条件
1.定义:分子之间的氢核与带部分负电荷的非金属 原子相互吸引,这种静电作用称氢键
2.表示: X—H…Y (X、Y为N、O、F)
F H
F
H
H
F
H F
3.氢键的形成条件: (1)在X—H…Y表示的氢键中,H原子位于X、Y间 (2)X、Y所属元素具有很强的电负性,很小的原子半径,
如N、O、F等。
D. CH4
2.固体冰中不存在的作用力是( )
A.离子键
B.极性键
C. 氢键
D. 范德华力
3、假如水分子间没有氢键的结合,则水的 沸点熔点
A.增大
B.降低
C. 不变
D.无法判断
课堂练习
下列事实与氢键有关的是 ( B ) A.水加热到很高的温度都难以分解 B.水结成冰体积膨胀,密度变小 C.CH4、SiH4、GeH4 、 SnH4的熔点随相 对分子质量的增大而升高 D.HF、HCl、HBr、HI的热稳定性依次减弱
§ 2-3 分子的性质
一、键的极性和分子的极性
1、键的极性:由电负性决定 2、分子的极性: (1)概念:
极性分子
正电荷重心和负电荷重心不相重合的分子
非极性分子
正电荷重心和负电荷重心相重合的分子
(2)判断方法 单原子分子 ——稀有气体 非极性分子 双原子分子 化合物——极性分子 单 质——非极性分子
HI
范德华力 (kJ/mol) 共价键键能 (kJ/mol)
21.14 431.8
23.11 366
26.00 298.7
范德华力很弱,约比化学键能小1-
(2) 范德华力与相对分子质量的关系
分子
HCl HBr
HI
相对分子 质量
范德华力 (kJ/mol)
36.5 21.14
二、范德华力及其对物质性质的影响
(4)范德华力对物质熔沸点的影响
单质 相对分 熔点 沸点 子质量 /℃ /℃
F2
38 -219.6 -188.1
Cl2
71 -101.0 -34.6
Br2 160 -7.2 58.8
I2
254 113.5 184.4
【总结】
一般情况下,组成和结 构相似的分子,相对分子量 越大,范德华力越大,熔沸 点越高
溶解度:一般与溶剂形成分子间氢
键可使溶解度升高,分子内
则降低。
沸点/℃ 100
H2O
75
50
25 HF
0
-25 NH3
-50
-75 -100 -125
H2S
HCl
PH3
SiH4 ×
H2Se AsH3
HB×r
GeH4
-150 CH4 ×
2
3
4
一些氢化物的沸点
H2Te SbH3
HI
×
SnH4
5 周期
CHO
三、氢键及其对物质性质的影响
氢化物
H2O H2S H2Se H2Te
沸点 150
沸点(℃) 100
100.0 -60.75 -41.5 -1.3
50
0 H2O H2S H2Se H2Te
-50
-100
这表明在H2O分子之间除了存在van der Waals力外, 还存在另一种作用力。
【问题探究】
冰山融化现象是物理变化还是化学变化?
冰山融化过程中有没有破坏其中的 化学键?
那为什么冰山融化过程仍要吸收能量呢?
分子间作用力
分子间存在着将分子聚集在一起 的作用力,这种作用力称为分子间作 用力.常见的为范德华力和氢键
二、范德华力及其对物质性质的影响 范德华力的特点
(1)广泛存在(由分子构成的物质) (2)作用力弱、是短程力 (3)主要影响物质的物理性质(熔沸点)
取决于成键原子之间的共价键是否有极性
多原子分子(ABm型) 取决于分子的空间构型
ABm分子极性的判断方法
物理模型法 将分子中的共价键看作作用力,不同的 共价键看作不相等的作用力,运用物理上 力的合成与分解,看中心原子受力是否平 衡,如平衡则为非极性分子;否则为极性 分子。
O
C
F1
F合=0
180º
布不均匀,是极性分子
F2
104º30'
H
NH3: N
H
H
三角锥型, 不对称,键的极 性不能抵消,是极性分子
107º18'
BF3: F1
F3
平面三角形,对称,
120º 键的极性互相抵消
F’
F2
( F合=0) ,是非极 性分子
H
H
H
H
109º28' C
正四面体型 ,对称结构,C-H键的极性 互相抵消( F合=0) ,是非极性分子
CHO
OH
OH 熔沸点???
交流研讨
用氢键的知识解释下列问题: (1)H2O的熔沸点为什么比硫化氢的高? (2)液态氟化氢的分子式为何可写成(HF)n? (3)为什么水和乙醇可以完全互溶? (4)为什么氨易液化?
练习:
1、下列分子中,不能形成氢键的是( )
A.NH3
B.HF
C.C2H5OH