当前位置:文档之家› 动物生态学知识点汇总

动物生态学知识点汇总

绪论一、动物生态学的定义:研究动物的生活方式,动物与动物间及动物与生活环境间相互关系的学科。

二、动物生态学的研究对象和内容:经典生态学研究的对象为:个体,种群,群落,生态系统。

近代生态学研究的对象为:分子,景观,生物圈。

动物生态学研究的内容:①对生态因子的研究,②对不同层次动物的研究③,实验方法和数学模型的研究。

三、生态因子研究——火的生态意义作用双重性:火对生态系统具有破坏性;它能够促进生物更新,增加生物多样性。

有益影响和作用的火:①小面积火,火烧面积不大而且维护了原有的生态环境,利于植被恢复;②低强度,火烧强度小且持续时间短,对生态系统破坏程度小,使其仍可维持原有水平;③计划用火,在人为控制下,有计划、有目的用火,安全可靠而且效果显著。

四、动物生态学研究的热点①种群生态学的研究。

种群动态研究是国内外对种群生态研究的核心和前沿领域。

研究种群动态的规律性,对种群数量进行预测和实施控制,是当前种群动态研究的主要任务。

引入现代系统科学研究种群的动态预测和动态控制是近代种群生态学发展的重要趋势。

复合种群:由于栖息地破碎化后,在相对独立地理区域内,各小生境上局域种群的复合。

各局域种群通过一定程度的个体迁移而成为一个整体。

②动物行为生态学的研究。

多种动物行为中,觅食行为、领域行为、社群行为、利他行为以及通讯行为是生存过程中必不可少的,其表现形式、作用机制及其给其他动物带来的好处和损失一直是行为生态学领域的热点。

③生物多样性保护与生境破碎化的研究。

生境破碎化是由于人为因素或环境变化而导致景观中面积较大的自然栖息地不断被分隔破碎或生态功能降低而形成的,其严重影响了动物的生存和繁衍。

④生物入侵的研究。

造成的危害:生态系统破坏和巨大经济损失。

⑤分子生态学方法的研究。

利用分子生物学的技术,从DNA水平来研究生物的生态和群落。

主要利用探针、引物和序列等三类检测生物种群DNA序列多态性的方法。

是当前动物生态学发展的一个趋势。

第一章动物生态学的研究方法一、动物野外调查的基本方法(了解)昆虫:网捕,采集→处理制成标本→分类鉴定鸟类:形态特征、羽毛颜色、活动姿态、鸣声以及巢穴特征来识别种类兽类:活动时留下的足迹、采食痕迹和粪便等进行识别;皮毛收购调查(一)直接观察法大型昼行性动物适用使用望远镜在荫蔽处观察,距离确定(二)活动痕迹的识别1.足迹:摄影、素描、灌制动物足迹模型、气味定点技术2.粪样:塑料袋封存、风干后纸袋3.其他痕迹:啃咬痕、卧痕、摩擦痕(三)常用技术无线电遥测技术卫星定位遥测技术第二章动物种群动态及其调节一、种群的概念:指在同一时期内占有一定空间的同种生物个体的集合。

二、动物种群的基本特征㈠动物种群的数量特征种群初级参数:①出生率②死亡率③迁入和迁出率次级种群参数:性比、年龄分布、种群增长率、分布型㈡动物种群的空间特征种群的内分布型:组成种群的个体在其生活空间中的位置状态或布局,称为种群的分布型,即内分布型。

均匀型随机型聚集型或称成群型种群分布类型的判定方法:常用而简便的检验内分布型的指标是方差/平均数比率,即㈢种群的遗传特征1.年龄结构:不同年龄组的个体在种群内的比例或配置状况,通常以年龄金字塔来表示。

2.性比三、动物种群的空间分布根据动物利用空间资源的方式,将动物种群的空间分布分为三类,即①单体分布:动物在一生中绝大多数时间内单独生活,属于个体分散的生活方式,也称一次内分布型。

②小群分布:种群内雌雄个体或家族占有一小块空间,通常该空间内没有同种的其他个体存在。

小群内的个体在空间中仍有一定的内分布型,称为二次内分布型。

动物中营家族生活方式的种类很多。

③大群分布:多对动物、多个家族或多个个体共同生活在一起,构成共同生活的很大的一群,社会是大群的极端形式。

包括不稳定的暂时集群;季节性集群;经常性的稳定集群。

四、阿利氏规律:每一种动物有一个最适的种群密度,因而,种群过剩和种群过低,或称过密和过疏都是不利的,都可能对种群产生抑制性的影响,这就叫阿利氏规律。

动物的集群与存活率存在一定的相关性。

五、空间异质性与集合种群空间异质性:生态学过程和格局在空间分布上的不均匀性及其复杂性。

一般可以理解为空间的斑块性和梯度的总和。

集合种群:指由于栖息地破碎化后,在相对独立地理区域内,各小生境局域种群的集合,各局域种群通过一定程度的个体迁移而成为一个整体。

六、自然种群数量变动及决定种群数量变动的因素和种群调节理论㈠自然种群数量变动的几种情况:一个动物种群进入新的栖息地,经过种群增长并建立起种群以后,一般有以下几种可能:①种群平衡,即较长期的维持在几乎同一水平上;②不规则波动或规则波动;③种群衰落或及灭亡;④种群大发生或暴发,即种群数量在短期迅速增长;⑤种群崩溃,种群内个体在短期内大批死亡,种群数量剧烈下降;⑥生态入侵,即生物因某种原因进入新分布区后迅速扩展蔓延,并对当地种造成危害的过程。

㈡决定种群数量变动的因素:出生率和死亡率,迁入率和迁出率㈢种群调节:种群恢复到其变动的平均密度的趋向。

这是一种负反馈机制,当种群数量超过某一特殊水平时,能使种群数量下降;而当种群数量低于这一特殊水平时,又能允许种群数量增长。

【种群调节的主要理论】⑴外源性调节:①气候学派主要观点:种群数量是气候因素的函数,气候改变资源的可获性,从而改变环境容纳量。

②生物学派主要观点:生物因子如捕食、寄生和种间竞争等对种群调节起决定作用。

③折中学派主要观点:气候因素和生物因素综合作用,共同调节种群数量。

⑵内源性调节①行为调节学说②内分泌调节学说③遗传调节学说七、种群数量的野外调查方法㈠绝对密度测定(绝对密度:单位面积或空间上的个体数目。

)1. 总数量调查:计数某地段中全部生活的某种动物的数量。

对某些脊椎动物可以直接调查其总数量,例如用航空摄影调查某块草原上的全部黄羊;计数集中于繁殖地的海豹等。

2.取样调查:研究者只计数种群的一小部分,用以估计种群整体。

①样方法:计数样方中全部个体,然后将其平均数推广,来估计种群整体。

形状可以是方的、长方的、条带的或圆形的,但样方必需具有良好的代表性,通过随机取样法来保证。

②标志重捕法:假设种群中标志的比例与重捕取样中的比例相同:就可以估计出种群的大小N:N = nM / m(the Lincoln Index,林可指数法或the Perterson Index,彼得逊指数法)需满足的条件:–标记对种群个体无影响;–标记记号牢固显目;–标记个体能充分地混和到种群中(标志和未标志个体有同样被捕捉的机会);–个体被捕获的可能性不随个体年龄的变化而变化;–种群为封闭种群(没有迁入和迁出,没有新的出生和死亡)。

根据标记和调查情况的不同,有三种估计方法:(1)Peterson估计法:一次标记一次回捕适用范围:大小较稳定的封闭种群;只进行一次标记和回收;(2)Schnabel估计法:多次取样标记和回捕适用范围:多次取样标记并释放个体;封闭种群,且为随机分布;单记号标记;调查时区分标记和非标记个体数量(3)Jolly-Seber估计法Southwood (1978):多次用不同记号标记、回捕时记录标记个体上次被捕时间。

适用条件或范围:可用于开放性种群;需进行3次或以上的可区分性记号标记与回收;标记和非标记个体捕获率相等;可得到种群的迁入量及存活率。

③去除取样法:通过一次调查并去除部分特定个体,然后再调查一次,得到种群中特定个体类型的比例的变化,从而估计出种群大小。

在一个封闭种群里,随着连续地捕捉,种群数量逐渐减少,因而花同样的捕捉力量所取得的效益(捕获数)就逐渐降低。

同时,随着连续的捕捉,逐次捕捉的累计数就逐渐增大。

如果将逐次捕捉数/单位努力(作Y轴),对着捕获累计数(作X轴)作图,就可以得到一个回归线。

当单位努力的捕捉数为零时,捕获累计数就是种群数量的估计值;这可以通过延长回归线,到达与X轴相交的截矩,截矩所表示的值就是种群数量N的估计值。

㈡相对密度测定(相对密度:表示动物数量多少的相对指标)分两类:直接数量指标与间接数量指标。

(1)捕捉:散放于地面的捕鼠夹、诱捕飞行昆虫的黑光灯、捕捉地面动物的陷阱、搜集浮游动物的生物网等,只要能加以合理的定量,就可以作为相对密度指标。

(2)粪堆计数:常用于调查兔、鹿等中、大型狩猎动物,计数样方或线路上的粪堆数目。

(3)鸣叫计数:主要适用于鸟类(4)皮毛收购记录:分析各地区的皮毛收购情况,划分成若干数量级,与地图法相结合,就可以获得皮毛兽在广大地区的数量分布图。

(5)单位渔捞努力的鱼数或生物量:每100小时拖网作业的捕鱼量。

(6)计数动物活动所遗留的痕迹,诸如土丘、洞穴、跑道、雪地上的足痕、巢等数量。

八、生命表(静态、动态及图解)的基本类型,适用范围及其优缺点㈠静态生命表:某一特定时间内,按种群内各年龄所占比例而编制的生命表。

适用范围:世代重叠的动物种群,在人口调查中也常用。

优点:①能够反映种群出生率和死亡率随年龄而变化的规律并从中看出种群的生殖对策和生存对策;②可计算内禀增长率r m和周限增长λ;③编制较易。

缺点:①无法分析死亡原因或关键因素;②不能对种群的密度制约过程和种群的调节过程进行定量分析;③不适用于出生或死亡变动很大的种群。

㈡动态生命表:根据观察一群同一时间出生的生物的死亡或存活动态过程而获得的数据来编制的生命表,也叫同生群生命表。

适用范围:用于实验室种群以及野外一些易跟踪的种群动态描述,适用于世代不重叠生物。

优点:关键因子分析缺点:自然界中有些生物寿命很长,再加上野外跟踪种群个体也很困难,其应用有很大的局限性。

㈢图解生命表Begon 和Mortimer 在1976年专为高等植物设计的一种图解生命表。

年专为高等植物设计的一种图解生命表。

实际也是一种动态生命表,其优点是能够更清晰、直观地反映动物种群动态,尤其适用于生活史比较复杂的动物。

实际也是一种动态生命表,其优点是能够更清晰、直观地反映动物种群动态,尤其适用于生活史比较复杂的动物。

自然界中几乎所有生物的生活史都是由若干阶段组成,最明显的是有变态的昆虫,分卵、各龄幼虫、蛹和成虫。

九、关键因子:凡是某因子引起种群死亡率的变动能极大地影响未来整个种群数量变动,这一因子称为关键因子。

十、种群增长的数学模型种群增长的理论模型:㈠非密度制约型种群增长模型离散增长模型(世代不重叠)连续增长模型(世代重叠)㈡密度制约型种群增长模型离散增长模型连续增长模型㈢自然种群的增长模型具时滞的种群增长模型具年龄结构的种群增长模型离散增长模型(世代不重叠):N t =入t*N0N=种群大小,t=时间,λ=种群的周限增长率(种群经过一个世代后的净殖率)模型的参数λ:λ>1,种群上升;λ=1,种群稳定;0<λ<1,种群下降;λ=0,雌体没有繁殖,种群在下一代灭亡。

相关主题