当前位置:文档之家› 方向控制阀工作原理

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves)气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。

13.1常用气动控制阀(Common pneumatic control valves)和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。

此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。

13.1.1 气动方向控制阀(Pneumatic direction control valves)气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。

13.1.1.1 气动方向控制阀的分类气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。

但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。

1.截止式方向控制阀芯的关系如图13.1阀口开启后气流的流动方向。

点:1)构紧凑的大口径阀。

2胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。

3)因背压的存在,所以换向力较大,冲击力也较大。

不适合用于高灵敏度的场合。

4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。

2. 滑柱式方向控制阀滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。

滑柱式方向控制阀的特点:1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构;2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀;3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;4)通用性强。

同一基型阀只要调换少数零件便可改变成不同控制方式、不同通路的阀;同一只阀,改变接管方式,可以做多种阀使用。

5)阀芯对介质的杂质比较敏感,需对气动系统进行严格的过滤和润滑,对系统的维护要求高。

13.1.1.2 常用的气动方向控制阀1. 单向型方向控制阀1)单向阀其逻辑关系为“或”,图形符号如图。

3)与门型梭阀A口才有输出;当P1或P2单独通气时,阀芯就被推至相对端,封闭截止型阀口;当P1和P2同时通气时,哪端压力低,A口就和哪端相通,另一端关闭,其逻辑关系为“与”,图形符号如图。

4)快速排气阀快速排气阀是为加快气体排放速度而采用的气压控制阀。

如图13.5为快速排气阀的结构原理。

当气体从P通入时,气体的压力使唇型密封圈右移封闭快速排气口e,并压缩密封圈的唇边,导通P口和A口,当P口没有压缩空气时,密封圈的唇边张开,封闭A和P通道,A口气体的压力使唇型密封圈左移,A、T通过排气通道e 连通而快速排气(一般排到大气中)。

2. 换向型方向控制阀换向型方向控制阀(简称换向阀),是通过改变气流通道而使气体流动方向发生变化,从而达到改变气动执行元件运动方向的目的。

它包括气压控制换向阀、电磁控制换向阀、机械控制换向阀、人力控制换向阀和时间控制换向阀等。

(1)气压控制换向阀气压控制换向阀是利用气体压力使主阀芯和阀体发生相对运动而改变气体流向的元件。

1)气压控制换向阀的分类按控制方式不同分为加压控制、卸压控制和差压控制三种。

加压控制是指所加的控制信号压力是逐渐上升的,当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是逐渐减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。

气控换向阀按主阀结构不同,又可分为截止式和滑阀式两种主要型式。

滑阀式气控换向阀的结构和工作原理与液动换向阀基本相同。

在此只介绍截止式换向阀。

2)截止式方向控制阀图13.6的状态,阀芯4P 与A 断开,A 与T 5与A 通道,封闭A 与T 图示为常断型阀,控制换向阀。

(2)阀1) 单电控换向阀由一个电磁铁的衔铁推动换向阀芯移位的阀称为单电控换向阀。

单电控换向阀有单电控直动换向阀和单电控先导换向阀两种。

如图13.7为单电控直动式电磁换向阀的工作原理。

靠电磁铁和弹簧的相互作用使阀芯换位实现换向。

图示为电磁铁断电状态,弹簧的作用导通A 、T 通道,封闭P 口通道;电磁铁通图13.8为单电控先导换向阀的工作原理。

它是用单电控直动换向阀作为气控主换向阀的先导阀来工作的。

图示为断电状态,气控主换向阀在弹簧力的作用下,封闭P口,导通A、T 通道;当先导阀带电时,电磁力推动先导阀芯下移,控制压力P1推动主阀芯右移,导通P、A 通道,封闭T通道。

类似于电液换向阀,电控先导换向阀适用于较大通径的场合。

2) 双电控电磁换向阀图示为左侧先导阀电磁铁通电状态。

工作原理与单电控先导换向阀类似,不再叙述。

(4)时间控制换向阀时间换向阀是通过气容或气阻的作用对阀的换向时间进行控制的换向阀。

包括延时阀和脉冲阀。

1)延时阀如图13.14为二位三通气动延时阀的结构原理。

由延时控制部分和主阀组成。

常态时,弹簧的作用使阀芯2处在左端位置。

当从K 口通入气控信号时,气体通过可调节流阀4(气换向阀换向; 气控信号消失后,气容中的气体通过单向阀快速卸压,当压力降到某值时,阀芯左移,换向阀换向。

2)脉冲阀脉冲阀是靠气流经过气阻、气容的延时作用,使输入的长信号变成脉冲信号输出的阀。

图13.15原理。

P 使P 、A 相通,A 气容充气,面积不等,T 相通,A 冲信号。

13.1.2 气动压力控制阀在气动系统中主要起调节、降低或稳定气源压力、控制执行元件的动作顺序、保证系统的工作安全等作用。

13.1.2.1 气动压力控制阀的分类气动压力控制阀分为减压阀(调压阀)、顺序阀、安全阀等。

13.1.2.2 常用的气动压力控制阀1.减压阀减压阀是气动系统中的压力调节元件。

气动系统的压缩空气一般是由压缩机将空气压缩,储存在储气罐内,然后经管路输送给气动装置使用,储气罐的压力一般比设备实际需要的压力高,并且压力波动也较大,在一般情况下,需采用减压阀来得到压力较低并且稳定的供气。

减压阀按调节压力的方式分为直动式和先导式两种。

(1)直动式减压阀图13.16为直动式减压阀的结构原理。

输入气流经P1进入阀体,经阀口2节流减压后从P2口输出,输出口的压力经过阻尼孔4进入膜片室,在膜片上产生向上的推力,当出口的压力P2瞬时增高时,作用在膜片上向上的作用力增大,有部分气流经溢流口和排气口排出,同时减压阀芯在复位弹簧1的作用下向上运动,关小节流减压口,使出口压力降低;相反情况10、挡板11、固定节流孔5及气室所组成的喷嘴挡板放大环节。

当喷嘴与挡板之间的距离发生微小变化时,就会使气室中的压力发生很明显的变化,从而引起膜片6有较大的位移,去控制阀芯4的上下移动,使进气阀口3开大或关小,提高了对阀芯控制的灵敏度,也就提高了阀的稳压精度。

(3)定值器定值器是一种高精度的减压阀,主要用于压力定值。

图13.18为定值器的工作原理图。

它由三部分组成:一是直动式减压阀的主阀部分;二是恒压降装置,相当于一定差值减压阀,主要作用是使喷嘴得到稳定的气源流量;三是喷嘴挡板装置和调压部分,起调压和压力放大作用,利用被它放大了的气压去控制主阀部分。

由于定值器具有调定、比较和放大的功能,因而稳压精度高。

A1和3E7)降压由于进B另因转动手柄14压下弹簧13并推动膜片12连同挡板11一同下移,挡板11与喷嘴10的间距缩小,气流阻力增加,使C室和D室的气压升高。

膜片4在D室气压的作用下下移,将溢流阀口关闭,并向下推动主阀芯2,打开阀口,压缩空气即经 B室和H室由输出口输出。

与此同时,H室压力上升并反馈到膜片12上,当膜片12所受的反馈作用力与弹簧力平衡时,定值器便输出一定压力的气体。

当输入的压力发生波动,如压力上升,若活门、进气阀芯2的开度不变,则B、F、H室气压瞬时增高,使膜片12上移,导致挡板11与喷嘴10之间的间距加大,C室和D室的气压下降。

由于B室压力增高,D室压力下降,膜片4在压差的作用下向上移动,使主阀口减小,输出压力下降,直到稳定在调定压力上。

此外,在输入压力上升时,E室压力和F室瞬时压力也上升,膜片8在上下压差的作用下上移,关小活门口7。

由于节流作用加强,F室气压下降,始终保持节流孔5的前后压差恒定,故通过节流孔门的气体流量不变,使喷嘴挡板的灵敏度得到提高。

当输入压力降低时,B室和H室的压力瞬时下降,膜片12连同挡板11由于受力平衡破坏而下移,喷嘴10与挡板11间的间距减小,C室和D室压力上升,膜片8和4下移。

膜片4的下移使主阀口开度加大,B室及H室气压回升,直到与调定压力平衡为止。

而膜片8下移,开大活门口,F室气压上升,始终保持节流孔5前后压差恒定。

同理,当输出压力波动时,将与输入压力波动时得到同样的调节。

由于定值器利用输出压力的反馈作用和喷嘴挡板的放大作用控制主阀,使其能对较小的P其结构型式很多,这里仅介绍几例。

如图13.20a 为直动截止式安全阀结构原理,当压力进行工作的。

13.1.3 节流阀等。

1.节流阀多种。

流阀。

P 为进气口,A 为出气口。

2.柔性节流阀柔性节流阀的结构原理如图13.22b 。

其工作原理是依靠阀杆夹紧柔韧的橡胶管2产生变排气节流阀安装在系统的排气口处限制气流的流量,一般情况下还具有减小排气噪声的作用,所以常称排气消声节流阀。

图13.22c为排气节流阀的结构原理。

节流口的排气经过由消声材料制成的消声套,在节流的同时减少排气噪声,排出的气体一般通入大气。

4图13.23芯1边槽口流向A时,单向阀芯113.2制阀logicalvalves)13.2.1 逻辑控制概述任何一个实际的控制问题都可以用逻辑关系来进行描述。

从逻辑角度看,事物都可以表示为两个对立的状态,这两个对立的状态又可以用两个数字符号“l”和“0”来表示。

它们之间的逻辑关系遵循布尔代数的二进制逻辑运算法则。

同样任何一个气动控制系统及执行机构的动作和状态,亦可设定为“1”和“0”。

例如将气缸前进设定为“l”,后退设定为“0”;管道有压设定为“1”,无压设定为“0”;元件有输出信号设定为“1”,无输出信号设定为“0”等。

这样,一个具体的气动系统可以用若干个逻辑函数式来表达。

由于逻辑函数式的运算是有规律的,对这些逻辑函数式进行运算和求解,可使问题变得明了、易解,从而可获得最简单的或最佳的系统。

总之,逻辑控制即是将具有不同逻辑功能的元件,按不同的逻辑关系组配,实现输入、输出口状态的变换。

气动逻辑控制系统,遵循布尔代数的运算规则,其设计方法已趋于成熟和规范化,然而元件的结构原理发展变化较大,自60年代以来已经历了三代更新。

第一代为滑阀式元件,可动部件是滑柱,在阀孔内移动,利用了空气轴承的原理,反应速度快,但要求很高的制造精度;第二代为注塑型元件,可动件为橡胶塑料膜片,结构简单,成本低,适于大批量生产;第三代为集成化组合式元件,综合利用了电、磁的功能,便于组成通用程序回路或者与可编程序控制器(PLC)匹配组成气——电混合控制系统。

相关主题