非线性电阻特性研究(一)【实验目的】(1)了解并掌握基本电学仪器的使用。
(2)学习电学实验规程,掌握回路接线方法。
(3)学习测量条件的选择及系统误差的修正。
(4)探究发光二极管和热敏电阻在常温下的伏安特性曲线。
【实验仪器】发光二极管(BT102)热敏电阻(根据实验室情况选择)滑动变阻器(0~100 Ω)定值电阻(400Ω)毫安表(0~50mA)微安表(0~50μA) 电压表(0~3v 0~6v)电源(10v)导线等【实验原理】(1)当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻R(R=U/I)。
若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图b)。
从图上看出,直线通过一、三象限。
它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数。
常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。
常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。
图3 发光二极管的工作原理)))电子的电势能电子的电势能发光二极管的核心部分是由p 型半导体和n 型半导体组成的晶片,在p 型半导体和n 型半导体之间有一个过渡层,称为p-n 结。
跨过此p -n 结,电子从n 型材料扩散到p 区,而空穴则从p 型材料扩散到 n 区,如右面的图3(a )所示。
作为这一相互扩散的结果,在p -n 结处形成了一个高度的e ΔV 的势垒,阻止电子和空穴的进一步扩散,达到平衡状态(见图3(b ))。
当外加一足够高的直流电压V ,且 p 型材料接正极, n 型材料接负极时,电子和空穴将克服在p -n 结处的势垒,分别流向 p 区和 n 区。
在p -n 结处,电子与空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。
这就是发光二极管的发光原理。
选择可以改变半导体的能带 隙,从而就可以发出从紫外到红外不同波长的光线,且发光的强弱与注入电流有关,LED 的内在特征决定了它是最理想的光源去代替传统的光源,它有着广泛的用途。
主要包括(1)体积小(2)耗电量低(3)使用寿命长(4)高亮度、低热量。
(5)环保(6)坚固耐用。
所以发光二极管有着广泛的用途,在道路以及室内照明,信号指示灯,以及装饰等有广泛的发展前景。
(2)V -I 特性:在正向电压小于阈值时,正向电流极小,不发光。
当电压超过阈值后,正向电流随电压迅速增加。
二极管的正向电阻Rz 是动态的,与正向电流IF 有关, IF 大,Rz 就小,IF ×Rz=VF (正向压降),温度一定时,VF 基本是定值,所以在常温时曲线类似如下。
热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。
热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。
正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。
(1)特点:热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100k Ω间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强。
图 a 线性器件伏安特性曲线图 b 非线性器件伏安特性曲线(2)分类:1. PTC 热敏电阻:PTC (Positive Temperature CoeffiCient )是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb 、Ta 、 Bi 、 Sb 、Y 、La 等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn 、Fe 、Cu 、Cr 的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化.2. NTC 热敏电阻:NTC (Negative Temperature CoeffiCient )是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC )的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC 热敏电阻材料.3. CTR 热敏电阻:临界温度热敏电阻CTR (CritiCal Temperature Resistor )具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数.构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR 为玻璃态热敏电阻.骤变温度随添加锗、钨、钼等的氧化物而变.这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的.若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还原为三氧化二钒,则急变消失.产生电阻急变的温度对应于半玻璃半导体物性急变的位置,因此产生半导体-金属相移.CTR 能够作为控温报警等应用. (3)应用: 热敏电阻热敏电阻也可作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。
利用NTC 热敏电阻的自热特性可实现自动增益控制,构成RC 振荡器稳幅电路,延迟电路和保护电路。
在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用的检测元件。
PTC 热敏电阻主要用于电器设备的过热保护、无触点继电器、恒温、自动增益控制、电机启动、时间延迟、彩色电视自动消磁、火灾报警和温度补偿等方面。
(4)主要缺点: 热敏电阻①阻值与温度的关系非线性严重; ②元件的一致性差,互换性差; ③元件易老化,稳定性较差; ④除特殊高温热敏电阻外,绝大多数热敏电阻仅适合0~150℃范围,使用时必须注意。
【可行性分析】测量之前,先记录所用二极管的型号(为测出反向电流的数值,采用锗管)和主要参数(即最大正向电流和最大反向电压),再判别二极管的正、负级。
为了测得晶体二级管的正向特性曲线,可按照图3.2-6所示的电路联线。
图中R 为保护晶体二级管的限流电阻,电压表的量限取1伏左右。
接通电源,缓慢地增加电压,例如,取0.00V 、0.10V 、0.20V 、⋅⋅⋅(在电流变化大的地方,电压间隔应取小一些)读出相应的电流值。
最后断开电源。
有于二极管具有单向导电性,反向电阻很大,为了测得反向特性曲线,可按图3.2-7图3.2-7 测晶体二极管反向伏安特性电图3.2-6 测晶体二极管正向伏安特性电联接电路。
将电流表换成微安表,电压表换接比1伏大的量限,接上电源,逐步改变电压,例如取0.00V、1.00V、2.00V、 ,读取相应的电流值。
测量热敏电阻的伏安特性曲线时将二极管换成热敏电阻,电流表选择毫安表,电路和定值电阻的选择看热敏电阻的大小。
【实验步骤】1)记录下所选非线性电阻的参数。
LED:最大功耗0.05w 最大工作电流20mA 正向电压<2.5V 反向电压>5V反向电流<50μA热敏电阻:(2)根据测量元件选择电路图。
测量LED正向伏安特性时,因电阻较小所以选择电流表外接法,而测量反向时电阻很大,电流很小,可将定值电阻拆除,选用微安表并内接,热敏电阻根据阻值适当选取电表的接法。
(3)测量二极管正向伏安特性曲线时,在电流值1mA以下,从0开始,以电压变化为基准,每隔0.1V测量一个点;在电流值1mA以上,电压每隔0.02V测量一个点;测量电流最大值小于最大工作电流。
(4)测量二极管反向伏安特性曲线时,在电流值1mA以下,从0开始,以电压变化为基准,每隔1V测量一个点;在电流值1mA以上,电流每隔5mA测量一个点;测量电压最大值小于额定工作电压。
(6)测量热敏电阻性曲线时,根据实际情况在变化大的地方多取几个点。
(7)在同一张直角坐标纸上画出BT102型二极管的正向和反向伏安特性曲线,分析二极管的伏安特性。
正确选择坐标轴比例,标明刻度、单位和图名,连平滑的曲线,曲线不必通过每个实验点。
【数据记录】(1)二极管:正向(2)热敏电阻【数据处理】【结果分析与讨论】【注意事项】(1)测二极管正向伏安特性时,毫安表读数不得超过二极管允许通过的最大正向电流值。
(2)测二极管反向伏安特性时,加在晶体管上的电压不得超过管子允许的最大反向电压(3)滑动变阻器做分压用时,通电前必须调节好使电压输出端间电阻为最小值,做限流用时,将电阻调到最大。
(4)注意被测电阻的功率。