当前位置:文档之家› 温度检测报警器(使用热敏电阻)

温度检测报警器(使用热敏电阻)

单片机与接口技术课程设计题目:温度检测报警器(使用热敏电阻)班级:10电信本姓名:廖姝兰学号:1008020382013年1月3日目录一、设计要求 (3)二、设计方案 (3)1、方案与论证 (3)2、系统原理图 (3)三、硬件设计 (4)1、单片机 (5)2、温度采集电路 (6)3、A/D转换电路 (7)4、温度显示电路...................................................................... . (8)四、软件设计 (9)1、软件分析 (9)2、软件设计的任务 (9)3、主程序流程图 (10)五、系统测试与分析 (10)1、模块的功能调试 (10)2、电脑仿真……………………………………………………………………10.3、软件与硬件结合调试 (10)六、设计总结 (11)附录1:总原理图 (11)附录2:C51程序 (12)附录3:元件清单 (14)参考文献 (15)一、设计要求基于A T89C51单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。

本文介绍的温度报警器以STC89S52单片机为控制核心,再配合热敏电阻PT100温度检测电路、AD0801转换器、单刀双掷继电器、报警电路、复位电路、晶振电路以及2个LED 数码管来实现对环境温度的实时监测,并能在预设的温度范围内用LED显示,同时在超过预设范围时产生报警信号。

本文分析了温度传感器的工作原理,系统硬件电路以及软件部分的设计。

二、设计方案1、方案与论证方案一:通过PT100热敏电阻对温度进行采,随着温度的变化,PT100的阻值也会随着变化,则通过自制的桥式测温电路的分压也会发生变化,由于变化的分压不是很大,所以采取UA741放大器将变化的电压进行放大,放大到AD0801模数转换器能够处理的范围之内。

经模数转换后的温度信号传入到STC89S52单片机,再由单片机控制继电器、蜂鸣器和数码管来实现温度控制、报警、显示的功能。

当温度在18度至70度之间时,系统正确显示温度,当温度超出这个范围时系统在显示温度的同时发出警报声。

方案二:主电路由NTC测温电阻,可调温度电位器,低频振荡器和音频振荡器四部分组成,工作原理如下:由电位器设定好温度值,当温度升高时,测温电阻NTC的电阻值降低,达到CD4011输入高电平阀值,导致低频振荡器工作,调制音频振荡器,通过三极管放大,由报警装置发出报警声。

方案三:电路由时基电路、电位器、电阻和热敏电阻RT组成温度检测触发电路。

RT是一种负温度系数热敏电阻,阻值随温度的升高而逐渐减小。

音响集成电路能产生4种模拟声,即警车声、消防车声、救护车声和机枪声。

具体工作过程如下:温度未达到预定值时,无音频信号输出,扬声器无声。

当温度升高到预定值时,发出响亮的警车声、消防车声、救护车声和机枪声。

通过对以上三种方案的各个方面的比较.如适用前景和市场经济效益分析来看,选择第一种方案比较合理。

2、系统原理图见图2-1所示:图2-1 温度报警器系统三、硬件设计1、单片机STC89C51是一种带4K 字节闪烁可编程可擦除只读存储器(FPEROM —Falsh Programmable and Erasable Read Only Memory )的低电压,高性能CMOS8位微处理器,俗称单片机。

该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

管脚说明:VCC :供电电压。

GND :接地。

P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL 门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH 编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O 口,P1口缓冲器能接收输出4TTL 门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH 编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O 口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH 编程和校验时接收高八位地址信号和控制信号。

温度检测AD0801模数转换器 STC89S52 单 片 机 LED 显示 蜂鸣器继电器P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时, ALE 只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

由于温度报警器的核心就是单片机,单片机的选择将直接关系到控制系统的工作是否有效和协调。

本设计采用MCS-51系列的STC89S52单片机,因为STC89S52单片机应用广泛,性能稳定,抗干扰能力强,性价比高。

8051包含了8位CPU,片内振荡器,8K字节ROM,256字节RAM,3个16位定时器/计数器等。

AT89S52的管脚分配如图3-1:图3-1 STC89S52的管脚分配图2、温度采集电路2、1 PT100温度传感器PT100温度传感器为正温度系数热敏电阻传感器,主要技术参数如下:(1)测量范围:-200℃~+850℃;(2)允许偏差值△℃:A级±(0.15+0.002|t|),B级±(0.30+0.005|t|);(3)最小置入深度:热电阻的最小置入深度≥200mm;(4)允通电流≤5mA因为PT100是将温度转换为电阻,而单片机处理的为数字电压信号,则要将电阻转换为电压,同时对电压信号进行放大后输入A/D转换ADC0801的VIN+端口。

2、2 测温电路图3-2 测温电路测温原理:采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),当Pt100的电阻值和VR2 的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放UA741放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。

差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V 供电。

3、A/D转换电路3.1 ADC0801介绍ADC0801是8位全MOS中速A/D 转换器、它是逐次逼近式A/D 转换器,片内有三态数据输出锁存器,可以和单片机直接口接。

其主要引脚功能如下:(1)RD,WR:读选通信号和选通信号(低电平有效)。

(2)CLK:时钟脉冲输入端,上升有效。

(3)DB0—DB7是输入信号。

(4)CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1/1.1RC。

(5)CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动。

(6)WR:写信号输入,接受微机系统或其它数字系统控制芯片的启动输入端,低电平有效,CS、WR同时为低电平时,启动转换。

(7)INTR:转换结束输出信号,低电平有效,输出低电平表示本次转换已完成。

该信号常作为向微机系统发出的中断请求信号。

(8)CLK:为外部时钟输入端,时钟频率高,A/D转换速度快。

允许范围为10-1280KHZ,典型值为640KHZ。

此时,A/D转换时间为10us。

通常由MCS—51单片机ALE端直接或分频后与其相连。

当MCS单片机与读写外,RAM操作时,ALE信号固定为CPU时钟频率的1/6,若单片外接的晶振为6MHZ,则1/6为1MHZ,A/D转换时间为64us。

3.2 A/D转换电路工作原理ADC0801的A/D转换结果输出端DB0—DB7与8051的P0.0-P0.7相连。

RD与STC89S52 RD相连,WR也是跟STC89S52 WR相连。

CS、VIN+接地。

(低电平有效)ADC0801的两模拟信号输入端,用以接受单极性、双极性和差摸输入信号,与WR同时为低电平A/D转换器被启动切在WR上升沿后100模数完成转换,转换结果存入数据锁存器,同时,INTR自动变为低电平,表示本次转换已结束。

如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。

相关主题