1引言日立,在自动化领域相对于西门子,ABB,三菱等一线品牌来说,还是一个相对比较陌生的品牌,其实在工控行业中日立的产品还是经常会看到的,像MICRO EH系列以及较大型的EH-150系列PLC,L系列,SJ系列,J系列变频器,以及交流伺服产品等等,在国内还是有一定的使用量。
特别是日立变频器在启动负载较大的输送搅拌装置,需要四象限运行的升降装置,以及纺织化纤行业的卷绕等应用方面都有较多的应用实例。
日立变频器在选型划分上还是比较清晰的,现在市面上正在销售中的变频器包括经济型的L100系列,以及涵盖L100功能的SJ100矢量型变频器,无速度传感器矢量控制的SJ300系列变频器,电梯专用的SJ-300EL系列变频器,风机水泵专用的L300P系列变频器。
现在,市场上的几款日立变频器性能稳定,特别是日立具有专利技术的无速度传感器矢量控制,使得日立变频器在低速时的启动特性相当优越。
现在的日立变频器在功能应用上也比较丰富,在同类变频器上经常用到的内置PID 功能,RS-485通讯功能,16段加减速功能,电机并行运行功能,速度升降功能,参数拷贝功能,三线运行功能等在日立变频器的应用中都能一一找到。
特别值得一提的是当两台电机在并行运行时同时采用矢量控制,这对于一般变频器是很难做到的,大家都知道,矢量控制时对于电机的参数要求都非常精确。
功率,电流,电压,定转子的阻抗都得非常准确,而两台电机并行运行时恰恰很难做到这一点。
这可能也是日立变频器的一个亮点。
日立变频器在可选件的应用上相对来说不是很多,在通讯选件上主要有Profibus,Device Net等可选。
在抗干扰,抑制高低谐波,射频干扰上,日立变频器还是有多种选件可选,交直流电抗器,RFI滤波器,LCR输出正弦滤波器等都为抑制变频器的对外干扰做了很好的保证。
今天有客户送来一个日立变频器,显示缺相报警,为了能够顺利修复这台变频器,我们花时间画下了日立变频器的缺相保护电路如下:日立变频器缺相检测电路图很明显,根据电路图,光耦损坏的可能性非常大,我们全部更换了所有光耦器件,故障马上排除了。
2日立变频器的一些常见故障2.1液晶显示器早期我们在国内市场上经常能碰到的日立变频器就是HFC-VWS3系列,这是一款V/F控制的变频器,功率模块采用GTR的大功率晶体管。
其最大功率能够做到132kW,采用液晶面板显示,这在同时期的日本变频器还是属于档次较高的。
但相对于用数码管显示的变频器,液晶的使用寿命和稳定性相对就显得差了,我们经常会碰到液晶显示器有亮度但没有字幕,此类情况多半是由于液晶显示器的驱动电源故障。
2.2开关电源此外,该系列变频器大量采用了厚膜电路,包括开关电源厚膜电路,驱动部分的厚膜电路。
采用厚膜电路多半是出于技术保密上的考虑。
由于厚膜电路上所有元器件都已被封装了,所以维修相对较困难。
2.3E9报警在J300系列变频器中,我们经常会碰到E9报警,我们可以检查一下三相输入侧电源,J300变频器带有三相输入电压检测,输入电压通过分压电阻送到CPU处理,在缺相和输入电压过低的情况下都有可能出现E9报警。
2.4--故障此类故障一般都出现在变频器上电时,此外直流侧欠压也会出现此类故障。
2.5E30IGBT故障SJ300系列变频器还会碰到的一种故障现象就是E30报警。
导致E30报警的可能性有几方面:其中主要有功率模块损坏,SJ300系列变频器中小功率采用的是日本富士生产的PIM模块,整流和逆变为一体化的模块,与J300采用的IPM智能化模块又有区别。
当然模块的损坏会导致E30报警的出现。
3、日立变频器维修案例一台日立L300P75kW变频器,在将模块故障故障修复后,去现场安装试机。
上电,起动即跳E16.4或E16.2,故障原因为电源有瞬时断路。
停机测三相380V电源输入,3相380V俱有,且相当平衡。
运行状态下,测三相输出电路,一相电压值有不稳定现象,出现280V到达350V左右的波动。
本机器电压检测电路检测的是输入电源中T、S两相的输入电压,当电网污闪大于15ms时,便保护停机。
判断为变频器的供电的空气开关,有一相触点接触不良,造成变频器跳E16.4或E16.2故障,拆开检查,果然有一组触点已严重烧损。
换电源开关后修复。
此故障在静止状态,或小电流状态,因空开虚接,根本检测不出输入电压的异常。
只有开机时才看出来。
但因变频器检测到异常迅即停机保护,有时候来不及检测,变频器已经停机了。
所以不易检测出来。
费了一些周折。
4、附带日立变频器常见报警及处理方法E23.x通常检查程序FFC、L-PCB、P-PCB、检查PV5N的波形1E23(D105=80)IGBT板上R22损坏2E23(GA)、E30(IGBT)L-PCB/IGBT上30角E21、E07、E14不能复位PC3上6角—GA19角0欧姆PC3上6角—GA19角180欧姆(R17)P-N端螺丝长度短了也会出现3E23.0FFC损坏/如果D105=00则L-PCB不坏4通电E23.0(D105=00)(1)FFC的28角有问题检查:PC4的6—N H电位PC4的1—N L电位/PC7的1—N L电位(2)OSC损坏检查J1信号(3)IGBT板上C17损坏(4)IGBT板上R2损坏5只是E23.0(D105=80)检查PC1、2、4、5、6、7、9只通过R0-T0供电通电后波形图如下:PC56pin<-N闪烁两次(始终高电位)->HPC51pin<-L1[V]闪烁两次(始终是低电位)->LPC66pin<-N H(5V)PC61pin<-L LPC46pin<-N H(5V)->闪烁->L PC41pin<-L平滑->闪烁->2VPC16pin<-N H(5V)->闪烁->H PC13pin<-L H(5V)->闪烁->HPC24pin<-N H(5V)PC21pin<-L H(5V)PC96pin<-L H or3[V]PC93pin<-N H(5V)PC76pin<-L H(5V)->闪烁两次->H PC71pin<-N H(5V)->闪烁两次->H6E23.0(D105=80)(1)检查OSC各管脚(2)R7损坏、PC7-N是L电平(正常是H电位)SJ300-220HFE PC16pin L电位(正常H电位)、PC2-6H电位、PC7-6L电位——损坏R1检查R1、2、4、5、6、301、302、304、305、3067E23.0;(d105;00or80)通讯故障->概率相当高E23.6;(d105;80)无PWM响应->低E23.6;()通讯故障->概率相当高E23.4;()d105;80慢PWM响应->非常低通讯故障80;GARES,GASCK,GARXD8E23.0(D105=00)J41松动9只有R0、T0供电时出现E23.0(D105=80)AVR对PV5-N可能在K1317附近或者E14.0,尤其在IGBT短路时,有时这些故障信息不出现10E23.0下桥臂电压不平衡(D105=80)NG相对+17V,E23.0不能复位检查门电路或者PWM反馈回路11E23.3(D105=80)电源板上二极管ZDW损坏12E23.4低于10HZ运行正常、高则出现PCU1~PCZ1损坏故障代码(D105=80)13E23.4(D105=80)R22、R7、PCU、V、W、X、Y、Z14E23.4(大约11HZ有电机出现故障)CU3、CV3、CW3、CX3、CY3、CZ3无电机不出现故障(D105=80)15E23.6(L300P-150HFE)(D105=80)GA-15PIN损坏35pin-5V、37pin-5v、38pin-0V、39pin-5v、40pin-5V、41pin-5V43pin-5v如果出现E3*或者E23出现还得检查GA或者门电路下桥臂的D57损坏16E23.4、E23.6(D105=00)FFC或者其连接件损坏17E23.6(D105=80)R69损坏18E23.6(D105=80)、E30.4(D105=80)GA板与IGBT板接触不良,如JX1等19E23.6如果能复位,运行,则1、降低载波频率、2、频率上限、3、光偶20E21.6IGBT上C80损坏客户的选择,从开始就决定了结果工控技服,选强的不择差的广东容济机电科技有限公司携手华南理工大学自动化科学与工程学院,强强联合,共同创建了面向工控自动化行业的研究生工作站与联合培养基地容济公司从事工控技术服务行业多年,被誉为“工控界的黄埔军校”,培养有大量资深的电子电气维修工程师,在工控行业影响深远,目前联合华南理工大学自动化科学与工程学院,进行校企合作,面向工控自动化行业,从芯片级维修到工程项目到技术培训到产品研发,建立了一种长期的战略性伙伴关系,长期有大量的研究生在本基地研究“芯片级工控产品维修”课题,摸索工控产品维修的标准化作业,为下来的连锁维修经营做准备。
基地培养出来的工程师都具有丰富的维修经验,掌握着大量宝贵的现场维修调试经验,精通各品牌工控产品的原理,能够在无图纸,无资料的条件下维修任何工控产品,保证不二次损坏机器,不收取任何检测费,没有修复的产品不收取任何费用,保修期内的修复品再次发生故障无法修复的退款处理。
本基地的工控产品维修包括:各国各种变频器伺服驱动器和伺服电机直流调速器编码器制动单元plc及扩展模块DCS智能仪表触摸屏与人机界面电源工控机电子线路数控CNC系统传感器电路板及其他板件基地拥有雄厚的技术实力和丰富的维修经验,目前被Parker SSD传动、西门子、富士、三菱、施耐德、伦茨、ABB、AB、包米勒等国际工控品牌授权为华南地区的维修服务中心。
基地配有先进的测试仪器,包括多通道示波器、短路跟踪仪、在线测试仪、通讯检测仪、逻辑分析仪和编码器专用检测仪等,建有系列重载测试和通讯检测设备,备有充足的零部件。
维修流程:第一步:询问用户工控的故障。
第二步:根据用户的故障描述和实际状况,结合工程师的理论及经验,分析造成此类故障的原因和大体故障点。
第三步:打开被维修的产品,确认被损坏的基本器件,分析维修恢复的可行性。
第四步:根据被损坏器件的工作位置,阅读及分析电路工作原理,从中找到损坏器件的原因,同时结合现场的使用情况,告知客户现场的情况预测,让客户做好现场检查工作,避免此类故障再次发生。
第五步:与客户联系,报上维修价格,征求用户维修意见。
第六步:寻找相关的器件进行配换。
第七步:确定工控故障及原因都排除的情况下,通电进行实验。