当前位置:文档之家› 离子交换树脂浅谈

离子交换树脂浅谈

离子交换树脂摘要:我国自20世纪50年代以来开始生产和应用离子交换树脂。

经过半个多世纪的发展,国内常规的离子交换树脂制造和应用技术已经较为成熟,水平与国外相当。

关键字:水处理、离子交换树脂、湿法冶金前言:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。

但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。

近年国内外生产的树脂品种达数百种,年产量数十万吨。

离子交换树脂都是用有机合成方法制成。

常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。

离子交换树脂不溶于水和一般溶剂。

大多数制成颗粒状,也有一些制成纤维状或粉状。

树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。

它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。

特点1.树脂颗粒尺寸离子交换树脂通常制成珠状颗粒,树脂颗粒较细者,反应速度较大,但细颗粒对液体阻力较大,需要较高的工作压力。

将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50…目筛网上的留存量,以9000粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。

大粒径树脂为0.6~1. 2mm(20^40目)之间,粉末树脂的粒径树脂0. 01~0. 1mm。

一般离子交换树脂的粒径。

2.树脂的密度树脂密度分为干密度和湿密度。

干密度是在温度115℃真空干燥后的密度。

干真密度=干树脂重/干树脂颗粒的体积g/cm³湿密度又分湿真密度和湿视密度。

(1)湿真密度一是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒的空隙)比值(g/ cm³,不同类型树脂,湿真密度不同。

湿真密度=湿树脂重/湿树脂颗粒的体积g/cm³即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同,此值一般在1.04~1.3之间,阳树脂常比阴树脂湿真密度大。

湿真密度在双层床工艺过程中与树脂的分层效果有关,(2)湿视密度。

树脂的密度与它的交联度和交换基团的性质有关。

交联度高的树脂密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性,大孔型树脂的密度则较低。

例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1. 26g/mL,视密度为0. 85g/mL;丙烯酸系凝胶型弱酸阳离子树脂的真密度为1. 19g/mL,视密度为0. 75g/mL。

.此值一般在0.60~0.85之间,实际采用湿视密度(堆积密度)来计算离子交换器内填充树脂的质量。

离子交换树脂应为不溶性物质,但树脂在合成过程中夹杂的聚合度较低的物质及树脂使用过程中受高温影响或被氧化会化学降解而生成的物质,会在运行时溶解出来,称为胶溶。

交联度较低和含活性基团多的树脂,溶解倾向较大。

离子交换器刚投入运行时发生出水带色现象就是树脂胶溶现象。

膨胀度离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。

溶液中电解质浓度越大,树脂内外溶液的渗透压差反而减小,树脂的溶胀就小,所以对于“失水”的树脂,应将其先浸泡在饱和食盐水中,使树脂缓慢膨胀,不致破碎。

当树脂中的离子变换时,如阳离子树脂由H+转为Na十,阴树脂由C1-OH-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。

通常,交联度低的树脂的膨胀度较大。

在设计离子交换器本体高度与再生装置及配水装置时,必须考虑树脂的转型膨胀率体积改变率(见表3-3、表3-4),以适应生产运行时树脂层中的离子转型发生的树脂体积变化。

树脂转型体积改变率越小越好,在浮动床中这样容易控制树脂层装填高树脂层度及填床率,使落床、成床时树脂层基本不乱。

此外,对固定床的中排再生装置设计有利。

树脂颗粒使用时有转移、摩擦、膨胀和收缩等变化,长期使用后会有少量损耗和破碎,当树脂破碎严重时,将会造成水流阻力的急剧增加,从而使设备出力达不到要求,影响正常运行,故树脂要有较高的机械强度和耐磨性。

交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。

如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生,一般交换器内树脂使用后其机械强度应保证每年的耗损率不超过3%~7%。

树脂的损耗超过正常值时,除了检查树脂的流失情况,还应考虑树脂是否存在破损问题。

树脂的骨架是靠交联剂连接在一起的。

交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。

例如,聚苯乙烯树脂用二乙烯苯做交联剂,其用量占单体总料量的8%时,这种树脂的交联度为8%。

低交联度为2%~4%,中交联度为7%~8%,高交联度为12%~20%;交联度直接影响树脂的性能。

交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。

这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。

树脂的热稳定性与构成树脂结构中的各部分成分密切相关。

钠型树脂比氢型、氢氧型都稳定。

如钠型聚苯乙烯树旨,能在120℃下使用,而其氢型只能在,100℃以下使用。

强碱性聚苯乙烯树脂可在60℃下使用。

带有经基的酚醛阴树脂只允许在30℃下长期使用。

提高水温能同时加快内扩散和膜扩散,离子交换设备运行时,一般水温保持在20~40℃。

(2)化学稳定性。

一般无机离子交换剂是不耐酸碱的,只能在pH≤8.5条件下使用。

有机合成强酸、强碱性树脂可在pH=1~14中使用。

弱酸阳树脂可在pH >4时使用,弱碱阴树脂应在pH<9时使用。

一般树脂的抗酸性优于抗碱性。

2)抗氧化性能。

各种氧化剂如氯、次氯酸、双氧水、氧、臭氧等会对树脂有不同程度的破坏作用,在使用前需要除去。

不同类型的树脂,受到损坏的程度不同。

就其抗氧化的能力来讲,交联度高的树脂优于交联度低的树脂;聚苯乙烯类树脂优于丽醛阴树脂只允许在30℃下长期使用。

提高水温能同时加快内扩散和膜扩散,离子交换设备运行时,一般水温保持在20-40℃。

氢型阳离子交换树脂是什么?氢型阳离子交换树脂(有时简称「氢型树脂」)是一种人造有机聚合物产品。

最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。

由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上「氢型」两字,以与同一系统的「钠型」种类有所区别。

不过「钠型」可以利用强酸处理成为「氢型」,「氢型」也可以用「氢氧化钠」溶液处理成为「钠型」,即两型树脂实际上可以互相转换。

氢型阳离子交换树脂不溶于水和一般溶剂。

和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3 ~ 1.2 mm之间,但大部分在0.4 ~ 0.6 mm范围内。

化学性质相当安定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。

氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的「硬度离子」,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。

依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。

种类树脂主要性质和类别之差异,在于它们的化学活性基种类之不同,因此氢型阳离子交换树脂可依活性基(一种官能基)种类不同,分成两种:强酸性阳离子交换树脂(strong- acid anion exchange resin)和弱酸性阳离子交换树脂(weak - acid anion exchange resin)。

强酸性阳离子交换树脂系因它的活性氢离子在水中很容易解离而得名,其骨架均为聚苯乙烯系统,主要产品是「磺酸型」强酸性阳离易解离而得名,骨架均为聚丙烯酸系统,主要产品是「羧酸型」弱酸性阳离子交换树脂,通常颜色较?白色或淡黄色球状子交换树脂,通常颜色较深,棕黄色至综色球状颗粒,以综色最常见;反之,弱酸性阳离子交换树脂则是因它的活性氢离子在水中比较不容颗粒,以淡黄色最常见。

如果用化学反应来表示这两种树脂的差异性,我们可以描述如下(R代表树脂母体):强酸性: R-SO3H → R-SO3- + H+ (H+容易解离,在水中呈强酸性)弱酸性: R-COOH → R-COO- + H+ (H+不易解离,在水中呈弱酸性) 由于强酸性阳离子交换树脂的解离能力很强,所以在任何酸性或碱性溶液中均能解离和产生离子交换作用,其作用pH范围介于1~14。

反之,弱酸性阳离子交换树脂的解离能力很弱,只能在弱酸性至碱性溶液中解离和产生离子交换作用,其作用pH范围仅介于5~14。

应用:1)水处理水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。

目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

2)食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。

例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。

离子交换树脂在食品工业中的消耗量仅次于水处理。

3)制药行业制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。

链霉素的开发成功即是突出的例子。

近年还在中药提成等方面有所研究。

4)合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。

用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。

如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。

甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。

5)环境保护离子交换树脂已应用在许多非常受关注的环境保护问题上。

目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。

如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。

6)湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。

相关主题