当前位置:文档之家› 智能小车报告

智能小车报告

分析整个智能车系统,PCB电路板功能化、模块化。自行设计制作的PCB电路板形状根据车模量身定做,布局走线合理,并根据功能实现了模块化分离,使电路的易用性、稳定性大幅提高,维护和更换也更加容易。
在未来的智能车设计中,定会出现更先进的光电传感器,也会出现更先进的技术,使光电车拥有更大的前瞻,采集到更多的赛道信息。随着信息的增加,期待着更先进的技术出现。
红外探测电路原理图
红外探测电路PCB图
3.1.3马达驱动电路
方案一:采用交流电经直流稳压处理后供电 :采用交流电提供直流稳压电源,电流驱动能力及电压稳定性最好,且负载对电源影响也最小。但由于需要电线对小车供电,极大影响了壁障小车行动的灵活性及地形的适应能力。而且壁障小车极易把拖在地上的电线识别为障碍物,人为增加了不必要的障碍。故我们放弃了这一方案。
3.2.2设计思路
程序先从看程序开始,然后写了串口程序,在写串口程序过程中也遇到不少问题,最后都找到了解决方法。写出的串口程序可以清晰的在上位机上呈现出摄像头所采集的图像,在这一过程中也遇到许多问题,比如采集得到的是乱码,一些有规律的乱码,仔细查找原因,原来是波特率设置的问题,虽然程序中设定的波特率和上位机的是一致的,但设置为9600和57600的效果却完全不同。另外还是因为没有设置换行,呈现出的是把本来是列上的图像,放到了每一行上,解决方法是,在每一发送结束后,加了一个换行函数。该程序也得到了应用。
小型电子产品设计报告
题目智能小车设计报告
学院XXXX
专业应用电子技术
班级应用电子A班
学号XXXXXX
学生姓名XXX
完成日期2014年5月24日
摘要
本文介绍了一种基于52单片机的小车寻轨系统。该系统采用3个高灵敏度的单端反射式红外光电对管和红外传感器来实现小车的寻轨功能。并利用单片机产生PWM波,通过控制电机驱动芯片去控制小车速度。测试结果表明,该系统能够平稳跟踪给定的路径。本小车以AT89C52低功耗、高性能单片机为检测和控制核心,通过写入的驱动、循迹等程序再连接外围电路来实现小车的启停、智能避障、智能循迹功能。
if(KeyV==2)
{
speed++;
if(speed>14) speed=14;
spd1=speed;
spd2=speed;
}
if(KeyV==3)
{if(speedFra bibliotek=0)speed--;
spd1=speed;
spd2=speed;
}
//显示
2.1.3 软件部分设计:
根据需求设计相应的程序流程图,在此基础上编写出程序,并下载到控制小车的芯片中用以控制小车。这个部分的设计也包括三个方面的设计即:电机驱动部分的程序、传感器读入部分和循迹的实现。
2.2总体方案论证与选择
方案一:基于AT89C52单片机,配以其他常用模块电路完成智能小车设计。此方案主要包括以下几个模块:避障模块、黑线检测模块、电机驱动模块、及显示模块。方案总体框图,如图1所示。此方案使用常用单片机AT89C52作为主控芯片,AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,32个双向I/O口; 256x8bit内部RAM;3个16位可编程定时/计数器中断;时钟频率0-24MHz;2个串行中断,可编程UART串行通道;2个外部中断源,共8个中断源; 2个读写中断口线,3级加密位; 低功耗空闲和掉电模式,软件设置睡眠和唤醒功能。
综合分析:由于传感器可以在车体的下部,发射、接收距离地面都很近,外界光对其干扰都很小。因此在基本不影响效果的前提下,为了方便起见,选用反射式红外发射-接收器ST168作为循迹检测模块的传感器。
循迹电路采用的是ST188红外对管,在小车行进的过程中由51机控制发射管发射信号,再将接收回来的信号送入单片机进行分析处理,使小车沿着反射信号的方向前进。
ET0=1;
speed=8;
spd1=speed;
spd2=speed;
Tdata[0]=1;
Tdata[1]=2;
Tdata[2]=3;
Tdata[3]=4;
while(1)
{
//按键
KeyV=Keyboard();
if(KeyV==1)
{
ENA_L= !ENA_L;
ENA_R= !ENA_R;
}
unsigned char spd2;
unsigned char code tab[]={0x3F,0x0c,0x5b,0x4f,0x6c,0x67,0x77,0xcd,0x7f,0x6f,0x00};
unsigned char Tdata[4];
unsigned int cnt500;
bit dp;
方案二:采用反射式红外发射-接收ST168
采用反射式红外发射-接收器ST168,直接用直流电压对发射管进行供电。其优点是可以实现实时控制,而且灵敏度可调,受外界干扰较小。
方案三:采用脉冲调制的红外发射-接收器
在方案二的基础上采用脉冲调制发射。由于环境光干扰主要是直流分量,因此如果采用带有特定交流分量的调制信号,则可在接收端采用相应的手段来大幅减少外界干扰。缺点是实现复杂、成本高。
3.2.3程序
#include "reg52.h"
sbit LED= P1^0;
sbit BUZZER= P1^1;
sbit MotoL1 = P1^7;
sbit MotoL2 = P1^2;
sbit MotoR1 = P1^5;
sbit MotoR2 = P1^6;
sbit ENA_L = P1^3;
方案二:采用单一电源供电。电源直接给单片机供电,通过单片机的IO口连接到电动机上,这样输出的电压稳定,不会给电路造成损坏。同时也减轻了小车的重量,使小车在启动和停止时的反应时间更短,减小了惯性的影响。其供电也比方案一简单。
综上所述,我们选择方案二。
电机驱动部分主要采用一片L298N和主控芯片AT89C52单片机相连接构成驱动电路。L298N芯片直插式的15个引脚,其中两个使能端ENA和ENB,两个反馈端SA和SB,四个输入端IN1、IN2、IN3和IN4一个接地端GND,一个VSS(5V时性能最好)逻辑电源电压输入端和一个VS功率电源电压输入端。L298N可同时驱动两个电机,最大输出电流为2A,鉴于它的良好性能和价格,选取L298N作为电机驱动芯片,L298N芯片如下图,L298N的四个输出端直接与两个电机相连驱动电机。
关键词:简易智能小车、AT89C52、主板电路、红外探测电路、马达驱动电路
引言
当今社会,科学技术日新月异,时代前进的步伐越迈越宽,应用自动化设备,计算机处理,现代化通讯,数字化信息,现代化显示设备等高新技术而建立的现代化智能,监控等系统已经得到充分的发展与应用,智能机器人也就应运而生。同时,在建设以人为本的和谐社会的过程中,智能服务机器人能够完成考古发掘,海底揭密,宇宙探索等危险作业,以保证人身安全。《国家中长期科学和技术发展规划纲要》一文指出:智能服务机器人是在非结构环境下为人类提供必要服务的多种高技术集成的智能化装备。以服务机器人和危险作业机器人应用需求为重点,研究设计方法、制造工艺、智能控制和应用系统集成等共性基础技术。重点研究低成本的自组织网络,个性化的智能机器人。2006━2020年,既是国家中长期技术发展计划实现阶段,也是我们最具有活力和最激情洋溢的时段。该智能小车模型是一辆由PCB和车体拼装的小车。所有的机械结构和零部件都安装固定在电路板上。因此完全不需要机械加工,非常适合实验阶段机器人的研制。
方案二:ATmega16是基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。配以其他常用模块电路完成智能小车设计。此方案主要包括以下几个模块:避障模块、黑线检测模块、电机驱动模块、及显示模块。方案总体框图,如图2所示。此方案使用ATmega16单片机作为主控芯片,16K字节的系统内可编程Flash(具有同时读写的能力,即RWW),512 字节EEPROM,1K 字节SRAM,32 个通用I/O 口线,32 个通用工作寄存器,用于边界扫描的JTAG 接口,支持片内调试与编程,三个具有比较模式的灵活的定时器/ 计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路10位具有可选差分输入级可编程增益(TQFP 封装) 的ADC ,具有片内振荡器的可编程看门狗定时器,一个SPI 串行端口,以及六个可以通过软件进行选择的省电模式。
delay(300);
LED=1;
BUZZER=1;
delay(300);
LED=0;
BUZZER=0;
delay(300);
LED=1;
BUZZER=1;
ENA_L=1;
ENA_R=1;
MotoL1=0;
MotoR1=0;
TMOD=0x01;
TH0=0xFC;
TL0=0x18;
TR0=1;
EA=1;
2.方案初步设计
2.1设计思路
2.1.1 机械部分设计:
包括智能小车的底盘、驱动模块和循迹模块电路板、传感器等的安装设计,这些设计是非常严格的,它们都得根据元件的需要来设计。
2.1.2 电路部分设计:
根据需求设计相应的电路原理图,调试电路板,在检查完硬件连接和完成电路的综合调试后,进入软件设计部分。
sbit ENA_R = P1^4;
sbit SMG_1 = P2^2;
sbit DATA = P2^1;
sbit CLK = P2^0;
sbit sens_out = P0^0;
相关主题