当前位置:文档之家› 555触发器及其应用

555触发器及其应用

实验八 555定时器及其应用一、实验目的1.熟悉集成555定时器的特性参数和使用方法。

2.掌握使用555定时器组成施密特触发器的方法3.掌握使用555定时器组成单稳态触发器的方法,定时元件RC对脉冲宽度的影响。

4.掌握使用555定时器组成自激多谐振荡器的方法和定时元件RC对振荡周期和脉冲宽度的影响。

二、实验器材1.数字电路实验箱1台2.示波器 1 台3.万用表 1 只4.集成电路:555定时器 1 只5.元器件:电阻、电容若干只三、实验原理和电路1.器件特性555定时器是一种中规模集成电路,外形为双列直插8脚结构,体积很小,使用起来方便。

只要在外部配上几个适当的阻容元件,就可以构成史密特触发器、单稳态触发器及自激多谐振荡器等脉冲信号产生与变换电路。

它在波形的产生与变换、测量与控制、定时电路、家用电器、电子玩具、电子乐器等方面有广泛的应用。

集成555定时器有双极性型和CMOS型两种产品。

一般双极性型产品型号的最后三位数都120是555,CMOS 型产品型号的最后四位数都是7555.它们的逻辑功能和外部引线排列完全相同。

器件电源电压推荐为4.5~12V ,最大输出电流200mA 以内,并能与TTL 、CMOS 逻辑电平相兼容。

其主要参数见表8.1。

555定时器的内部电路框图及逻辑符号和管脚排列分别如图8.1和图8.2所示。

引脚功能:V i1(TH ):高电平触发端,简称高触发端,又称阈值端,标志为TH 。

V i2(TR ):低电平触发端,简称低触发端,标志为TR 。

V CO :控制电压端。

V O :输出端。

Dis :放电端。

Rd :复位端。

555定时器内含一个由三个阻值相同的电阻R 组成的分压网络,产生31V CC 和32V CC两个基准电压;两个电压比较器C 1、C 2;一个由与非门G 1、G 2组成的基本RS 触发器(低电平触发);放电三极管T 和输出反相缓冲器G 3。

Rd 是复位端,低电平有效。

复位后, 基本RS 触发器的Q 端为1(高电平),经反相缓冲器后,输出为0(低电平)。

分析图8.1的电路:在555定时器的V CC 端和地之间加上电压,并让V CO 悬空,则比较器C 1的同相输入端接参考电压32V CC ,比较器C 2反相输入端接参考电压31V CC ,为了学习方便,我们规定:.(a) 555的逻辑符号(b) 555的引脚排列图8.2 555定时器逻辑符号和引脚图8.1 555定时器内部结构Vi1(TH)Vi2Vco..121当TH 端的电压>32V CC 时,写为V TH =1,当TH 端的电压<32V CC 时,写为V TH =0。

当TR 端的电压>31V CC 时,写为V TR =1,当TR 端的电压<31V CC 时,写为V TR =0。

① 低触发:当输入电压V i2<31V CC 且V i1<32V CC 时,V TR =0,V TH =0,比较器C 2输出为低电平,C 1输出为高电平,基本RS 触发器的输入端S =0、R =1,使Q =1,Q =0,经输出反相缓冲器后,V O =1,T 截止。

这时称555定时器“低触发”;② 保持:若V i2>31V CC 且V i1<32V CC ,则V TR =1,V TH =0,S =R =1,基本RS 触发器保持,V O 和T 状态不变,这时称555定时器“保持”。

③ 高触发:若V i1>32V CC ,则V TH =1,比较器C 1输出为低电平,无论C 2输出何种电平,基本RS 触发器因R =0,使Q =1,经输出反相缓冲器后,V O =0;T 导通。

这时称555定时器“高触发”。

555定时器的“低触发”、“高触发”和“保持”三种基本状态和进入状态的条件(即V TH 、V TR 的“0”、“1”)必须牢牢掌握。

V CO 为控制电压端,在V CO 端加入电压,可改变两比较器C 1、C 2的参考电压。

正常工作时,要在V CO 和地之间接0.01μF (电容量标记为103)电容。

放电管T l 的输出端Dis 为集电极开路输出。

555定时器的控制功能说明见表8.2。

根据555定时器的控制功能,可以制成各种不同的脉冲信号产生与处理电路电路,例如,史密特触发器、单稳态触发器、自激多谐振荡器等。

2.史密特触发器由555定时器组成的史密特触发器见图8.4(虚线框中电位器RW 用来调节阈值);在数字电路中用于脉冲信号的整形。

当输入V i 是不规则信号时,经史密特触发器处理 后,输出为规则的方波;将史密特触发器用于数据通讯电路中,具有一定的抗干扰能力。

在图8.4(a )电路中,若V i 端 (即555的2、6脚)输入三角波(或正弦波)及其它不规则的波形,则在输出端V O (3脚)输出幅值恒定的方波。

史密特触发器是一种具有双 阈值(V T +、V T —)的比较器电路,(如果在V CO 端接入R W ,则可调节阈值)。

工作原理:在不接入R W 时,V T +=CC 32V ,V T —=CC 31V 。

因为V i 端与TH 和TR 端连接,122所以:V i =V TH =V TR 。

由表8.2分析可知:① V i < V T — 时,V TH = 0, V TR = 0,555定时器“低触发”,V O 为高电平。

② V T — < V i < V T + 时,V TH =0,V TR =1,555定时器“保持”,V O 保持。

③ V i > V T + 时,V TH = 1,V TR = 1,555定时器“高触发”,V O 为低电平。

3.单稳态触发器图8.6所示为单稳态触发器的电路和波形图。

单稳态触发器在数字电路中常用于规整信号的脉冲宽度(T W ):将脉宽不一致的信号输入单稳态触发器后,可输出脉宽一致的脉冲信号。

另外,单稳态触发器也常用于定时器电路中,调整RC 的值可以得到不同的定时值。

单稳态触发器采用电阻、电容组成RC 定时电路,用于调节输出信号的脉冲宽度T W 。

在图8.6(a )的电路中,V i 接555定时器的TR 端,其工作原理如下:① 稳态(触发前):V i 为高电平时,V TR =1,输出V O 为低电平,放电管T 导通,定时电容器C 上的电压(6、7脚电压)V C = V TH = 0 ,555定时器工作在“保持”态。

② 触发:在V i 端输入低电平信号,555定时器的TR 端为低电平,电路被“低触发”,Q 端输出高电平信号,同时,放电管T 截止,定时电容器C 经(R+R W )充电,V C 逐渐升高。

电路进入暂稳态。

在暂稳态中,如果V i 恢复为高电平(V TR =1),但V C 充电尚未达到32V CC 时(V TH =0),555定时器工作在保持状态,V O 为高电平,T 截止,电容器继续充电。

③ 恢复稳态:经过一定时间后,电容器充电至V C 略大于32V CC ,因V TH >32V CC 使555定时器“高触发”,V O 跳转为低电平,放电管T 导通,电容器经T 放电,V C 迅速降为0V ,这时,V TR =1,V TH =0,555定时器恢复“保持”态。

④ 高电平脉冲的脉宽T W :当V O 输出高电平时,放电管T 截止,电容器开始充电,在电容器上的电压<32V CC 这段时间,V O 一直是高电平。

因此,脉冲宽度即是由电容器C 开始充电至V C =32V CC 的这段暂稳态时间。

Vi方..图8.5 微分电路图8.6 单稳态触发器电路与波形图(b) 波形图(a) 单稳态触发器电路.123脉冲宽度计算公式:T w ≈1.1(R+R W )C 。

⑤ 图8.5为产生窄负脉冲用的“微分电路”,原理后附。

4.自激多谐振荡器图8.7所示为自激多谐振荡器电路和波形图。

自激多谐振荡器用于产生连续的脉冲信号。

电路采用电阻、电容组成RC 定时电路,用于设定脉冲的周期和宽度。

调节R W 或电容C ,可得到不同的时间常数;还可产生周期和脉宽可变的方波输出。

脉冲宽度计算公式:T w ≈0.7 (R 1+R W +R 2) C 振荡周期计算公式:T ≈0.7 (R 1+R W +2R 2) C分析方法与单稳态电路相似,但电容器C 的充电电阻是R 1+R W +R 2 ,放电电阻是R 2 。

当V C 是低电平时,555定时器低触发,V O 为高电平,放电管T 截止,电容器经(R1+RW+R2)充电,当充电至V C =V TH >32V CC 时,电路高触发,输出V O 变为低电平,放电管T 导通,电容器经R 2放电,当放电至V C =V TR <31V CC 时,电路又进入低触发,V O 变为高电平,如此周而复始,循环不止,输出连续脉冲信号。

四、实验内容及步骤将555定时器插入实验箱中(注意器件方向),电源电压V CC =+5V 。

然后按以下步骤进行。

1.史密特触发器① 对照图8.4(a )接线。

其中555定时器的2和6脚接在一起为V i ,3脚V O 接状态图8.7 自激多谐振荡器电路和波形图(a) 自激多谐振荡器电路.(b) 振荡波形V1V2V3灯,用来监视V O状态。

②用实验箱中的100K电位器按图8.3接线,组成一个直流信号源,与单稳态触发器的V i端连接,V CC接+5V。

用数字万用表监测V i的电压。

③检查接线无误后,接通电源,旋转电位器改变直流输入信号V i的电压值,观察状态灯的亮、灭情况,在状态灯亮、灭的临界点十分缓慢地旋转电位器,仔细、反复进行几次,找出使状态灯亮、灭对应的V i电压准确值,判断V TH1、V TH2。

记录结果。

2.单稳态触发器按图8.6(a)接线,组成单稳态触发器。

由于该电路V i端输入信号的脉宽必须小于输出脉冲V O的脉宽(即需要窄脉冲触发)才能定时准确,因此当使用方波信号作为输入信号时,必须经“微分电路”变为窄脉冲。

按图8.5接线,组成微分电路。

将实验箱的“单次正脉冲信号”经微分电路接V i,输出V O接状态灯。

①调节R w为最大值100KΩ输入单次脉冲一次,观察状态灯亮的时间。

调节R W,再进行输入V i的操作,观察状态灯亮时间。

实验者更换定时电容C为10μF,再进行上述操作,观察输出V o的延时情况。

②调节连续脉冲发生器(Pules Input)产生500Hz方波信号,并经微分电路接单稳态触发器的V i端。

用示波器Y1观测V i ,Y2分别观测V o和V C,记录波形。

3.多谐振荡器按对照图8.5(a)接线,输出端V O接状态灯和示波器,并把10μF电容C接入电路中。

①接线完毕,检查无误后,接通电源,555定时器工作。

这时可看到状态灯间歇闪亮。

相关主题