光纤与光纤通信原理论文光信息科学与技术2班(一)光纤释义光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外。
在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
(二)光纤分类按光在光纤中的传输模式划分,可分为多模和单模光纤两种。
按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。
(三)多模光纤特点常用多模光纤的直径为125μm,其中芯径一般在50~100μm之间。
在多模光纤中,可以有数百个光波模在传播。
多模光纤一般工作于短波长(0.8μm)区,损耗与色散都比较大,带宽较小,适用于低速短距离光通信系统中。
多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光纤中。
(四)单模光纤特点常用单模光纤的直径也为125μm,芯径为8~12μm。
在单模光纤中,因只有一个模式传播,不存在模间色散,具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长距离的光纤通信系统中。
使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和稳定性都有较高的要求,即谱宽要窄,稳定性要好。
单模光纤一般必须使用半导体激光器激励。
按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。
常规型单模光纤的最佳传输频率在1 310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。
阶跃折射率光纤从芯层到包层的折射率是突变的。
多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。
多模渐变折射率光纤从芯层到包层的折射率是逐渐变小,可使高阶模按正弦形式传播,这样能减少模间色散,提高光纤带宽,增加传输距离,但成本较高。
现在所使用的多模光纤多为渐变折射率光纤。
(五)光纤的标准目前,国际上单模光纤的标准主要是ITU-T的系列:G.650“单模光纤相关参数的定义和试验方法”、G.652“单模光纤和光缆特性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。
ITU-T对多模光纤的标准是G.651“50/125μm多模渐变折射率光纤和光缆特性”。
国际电工委员会也颁布了系列标准IEC 60793,我国的光纤标准包括国家标准GB/T15912系列和信息产业部颁布的通信行业标准YD/T系列。
(六)光纤通信特点1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。
采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。
目前400Gbit/s系统已经投入商业使用。
光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。
因此,无中继传输距离可达几十、甚至上百公里。
2)信号干扰小、保密性能好;3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
4)光纤尺寸小、重量轻,便于铺设和运输;5)材料来源丰富,环境保护好,有利于节约有色金属铜。
6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
7)光缆适应性强,寿命长。
8)质地脆,机械强度差。
9)光纤的切断和接续需要一定的工具、设备和技术。
10)分路、耦合不灵活。
11)光纤光缆的弯曲半径不能过小(>20cm)12)有供电困难问题。
13)利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.(七)光纤通信的原理光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.(八)应用领域光纤通信主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。
还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);光纤传输系统主要由:光发送机、光接收机、光缆传输线路、光中继器和各种无源光器件构成。
要实现通信,基带信号还必须经过电端机对信号进行处理后送到光纤传输系统完成通信过程。
它适合于光纤模拟通信系统中,而且也适用于光纤数字通信系统和数据通信系统。
在光纤模拟通信系统中,电信号处理是指对基带信号进行放大、预调制等处理,而电信号反处理则是发端处理的逆过程,即解调、放大等处理。
在光纤数字通信系统中,电信号处理是指对基带信号进行放大、取样、量化,即脉冲编码调制(PCM )和线路码型编码处理等,而电信号反处理也是发端的逆过程。
对数据光纤通信,电信号处理主要包括对信号进行放大,和数字通信系统不同的是它不需要码型变换。
附:光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。
光纤通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。
光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。
光纤通信的发展趋势光纤到家庭(FTTH)的发展FTTH所需要的光纤可能是现有已敷光纤的2~3倍。
过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。
近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。
发达国家对FTTH的看法不完全相同:美国A T&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。
美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。
日本NTT发展FTTH最早,现在已经有近200万用户。
目前中国FTTH 处于试点阶段。
◆FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。
与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。
FTTH目前大量推广受制约。
对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,ADSL就难以满足。
尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。
正在用H.264技术开发,可压缩到5~6Mbps。
通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。
可以认为HDTV是FTTH的主要推动力。
即HDTV业务到来时,非FTTH不可。
◆ FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。
F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。
缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。
PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。
缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。
(按照目前市场价格,PEP 比PON经济)。
实际上可表示为:通信输+交换。
光纤只是解决传输问题,还需要解决光的交换问题。
过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。
现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。
合理的方法应该采用光交换。
但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。
显然是不合理的办法,是效串不高和不经济的。
正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。
附:不同光纤的技术指标及其特性●普通单模光纤普通单模光纤是指零色散波长在1 310 nm窗口的单模光纤,又称色散未移位光纤或普通光纤,国际电信联盟(ITU-T)把这种光纤规范为G.652光纤。
G.652属于第一代单模光纤,是1310 nm波长性能最佳的单模光纤。
当工作波长在1310 nm时,光纤色散很小,色散系数D在0~3.5 ps/nm·km,但损耗较大,约为0.3~0.4 dB/km。
此时,系统的传输距离主要受光纤衰减限制。
在1 550 nm波段的损耗较小,约为0.19~0.25 dB/km,但色散较大,约为20 ps/nm·km。
传统上在G.652上开通的PDH系统多是采用1310nm零色散窗口。
但近几年开通的SDH系统则采用1550nm的最小衰减窗口。
另外,由于掺铒光纤放大器(Erbium Doped Fiber Amplifier,EDFA)的实用化,密集波分复用(DWDM)也工作于1550nm 窗口,使得1550nm窗口己经成为G.652光纤的主要工作窗口。
对于基于2.5 Gb/s及其以下速率的DWDM系统,G.652光纤是一种最佳的选择。
但由于在1550nm波段的色散较大,若传输10 Gb/s的信号,一般在传输距离超过50km时,需要使用价格昂贵的色散补偿模块,这会使系统的总成本增大。