当前位置:
文档之家› 硒化镉CdSe量子点的制备和应用
硒化镉CdSe量子点的制备和应用
18
Prashant V. Kamat, J. Am. Chem. Soc. 2007, 129: 41ห้องสมุดไป่ตู้6–4137.
Linking CdSe QDs to TiO2 Surface with a Bifunctional Surface Modifier
Prashant V. Kamat. J. Phys. Chem. CSOC. , 2008, 112 (48): Prashant V. Kamat. J. AM. CHEM. 2006, 128: 18737-18753. 2385-2393.
2
Structure of CdSe Quantum Dots
Wurtzite
Zinc blende
Rock salt
戴全钦. 吉林大学博士学位论文,2007
3
Cd(CH3)2 + TOPSe + TOPO
Solution A: Cd(CH3)2 + TOP
Combining
CdSe/TOPO
Solution B: Se + TOP
8
CdAc2 + Na2SeSO3
Green Methods
CdAc2· H2O
By stiring
CdSe
Se S
O
O
NaOH
Dissolving
O
C2H5OH+H2O
By stiring
Autoclave (40-150℃)
OA
Na2SeSO3
Nucleation
9
Y.D. Li. Inorganic Chemistry. 2008, 47(11): 5022-5028.
Quantum Dot Solar Cell
② Semiconductor nanostructure polymer solar cell
③ Quantum dot sensitized solar cell
④ Metal-semiconductor photovoltaic cell
A. J. Nozik. Physica E, 2002 (14): 115-200.
Drug Screening
Biological probe
12
―The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells.‖
6
CdO + Se/ODE + ODE = CdSe
CdO
Dissolving
OA+ODE
Heating
Injecting
Se+ODE
Mixture (300℃)
Cooling
Nucleation
X.G. Peng, et al. Angewandte Chemie-International Edition, 2002, 41(13): 7 2368-2371.
Injecting
Solvent: TOPO (300℃)
Cooling
Prevent further nucleation
Nucleation
4 MIT M.G. Bawendi, et al. J. Am. Chem. Soc. 1993, 115 (19): 8706-8715.
Room temperature optical absorption spectra of CdSe nanocrystallites dispersed in hexane and ranging in size from ~1.2 nm to 11.5 nm.
Photoluminescence
Q. J. Sun, et al. Nature Photonics. 2007,1, 717.
11
LED
Solar cell
Laser devices
Applications of Quantum Dots
Medical Imaging Biological Labeling Biochip
17
Prashant V. Kamat. J. Phys. Chem. C, 2008, 112 (48): 18737-18753.
Quantum dot sensitized solar cell—QDSSC
Left: The dependence of electron transfer rate constant on the energy difference between the conduction bands. Right: Scheme illustrating the principle of electron transfer from two different size CdSe quantum dots into TiO2 nanoparticle.
1240 Eg (eV ) (nm)
D (2.6786 109 )λ 4 (4.9348 106 )λ 3 (3.4222 103 )λ 2 1.0511 λ 121.74
M.G. Bawendi, et al. J. Am. Chem. Soc. 1993, 115 (19): 8706-8715.
Prashant V. Kamat. J. Phys. Chem. C, 2008, 112 (48): 18737-18753.
Artistic impression of a rainbow solar cell assembled with
different size CdSe quantum dots on TiO2 nanotube array.
Fluorescence of the CdSe with different emission (λex ) 365nm
Y.D. Li, et al. Inorganic Chemistry. 2008, 47(11): 5022-5028.
10
Core–shell structures
TEM
14
Schematic diagram showing the strategies to develop quantum dot (semiconductor nanocrystal) based solar cells: (a) metal-semiconductor junction (b) polymer-semiconductor (c) semiconductor-semiconductor systems
5
CdO + TOPSe + TOPO + TDPA
CdO
Dissolving
CdSe
TDPA+TOPO (300-320℃)
Cooling
Injecting
Se + TOP
Solution (270℃)
Cooling
Nucleation
X.G. Peng, et al. J. Am. Chem. Soc, 2001. 123(1): 183-184.
Prashant V. Kamat. J. Phys. Chem. C, 2008, 112 (48): 18737-18753.
Left: Photocurrent response as a function of the amount of TiO2 deposited on carbon fiber electrode (CFE); Right: Scheme showing the electron transport through SWCNT and SEM image of the SWCNT-TiO2 composite.
15
Prashant V. Kamat. J. Phys. Chem. C, 2008, 112 (48): 18737-18753.
Quantum dot sensitized solar cell—QDSSC
Nitrogen doped
Principle of operation of quantum dot sensitized solar cell
19
a
b
Bifunctional organic molecule
I-V characteristics of (a) OTE/TiO2 and (b) OTE/TiO2/MPA/CdSe films. Electrolyte 0.1 M Na2S. Fast capture of electrons at the quantum dot interface remains a major challenge for efficient harvesting of light energy.
Prashant V. Kamat. J. AM. CHEM. SOC. 2006, 128: 2385-2393.
20
Emerging Strategies to Capture and Transport Photogenerated Electrons
Photocurrent generation using CdSe-nC60 composite clusters IPCE:Incident Photon to Current-generation Efficiency
Lopez-Luke, T. J. Phys. Chem. C. 2008, 112:1282–1292.
16