当前位置:文档之家› 无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理无刷直流电动机简介和基本工作原理无刷直流电动机简介直流无刷电机: 又称“无换向器电机交一直一交系统”或“直交系统”。

是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。

无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控制, 是当今最理想的调速电机。

无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳选择。

基本工作原理无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。

同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。

由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流—转矩特性。

由于无刷直流电动机的励磁来源于永磁体,所以不象异步机那样需要从电网吸取励磁电流;由于转子中无交变磁通,其转子上既无铜耗又无铁耗,所以效率比同容量异步电动机高10°/左右,一般来说,无刷直流电动机的力能指针(n cos 0)比同容量异步电动机高12%-20%。

研究结果表明,在半导体薄片上产生的霍尔电动势E可用下式表示:式中RH ——霍尔系数(IH ——控制电流(A);B ——磁感应强度(T);d ——薄片厚度(m);p--------- 材料电阻率(Q *s););u ——材料迁移率();若在上式中各常数用KH表示,则有E=KHIHB霍尔元件产生的电动势很低,直接应用很不方便,实际应用时采用霍尔集成电路。

霍尔元件输出电压的极性随磁场方向的变化而变化,直流无刷电动机的位置传感器选用开关型霍尔集成电路。

磁阻效应是指元件的电阻值随磁感应强度而变化,根据磁阻效应制成的传感器叫磁阻电阻。

三相直流无刷电动机的运行特性要十分精确地分析直流无刷电动机的运行特性,是很困难的。

一般工程应用中均作如下假定:1)电动机的气隙磁感应强度沿气隙按正弦分布。

2)绕组通电时,该电流所产生的磁通对气隙所产生的影响忽略不计。

(3)控制电路在开关状态下工作,功率晶体管压降为恒值。

(4)各绕组对称,其对应的电路完全一致,相应的电气时间常数忽略不计。

(5)位置传感器等控制电路的功耗忽略不计。

由于假设转子磁钢所产生的磁感应强度在电动机气隙中是按正弦规律分布的,即B=BMsi n B 。

这样,如果定子某一相绕组中通一持续的直流电流,所产生的转矩为TM=ZDLBMrlsin 0式中,ZD ――每相绕组的有效导体数;L ——绕组中导线的有效长度,即磁钢长度;r ――电动机中气隙半径;l ――绕组相电流。

就是说某一相通以不变的直流后,它和转子磁场作用所产生的转矩也将随转子位置的不同而按正弦规律变化,如图 5 所示。

图 5 在恒定电流下的单相转矩它对外负载讲,所得的电动机的平均转矩为零。

但在直流无刷电动机三相半控电路的工作情况下,每相绕组中通过1/3 周期的矩形波电流。

该电流和转子磁场作用所产生的转矩也只是正弦转矩曲线上相当于1/3 周期的一段,且这一段曲线与绕组开始通电时的转子相对位置有关。

显然在图 6 a 所示的瞬间导通晶体管,则可产生最大的平均转矩。

因为在这种情况下,绕组通电120 度的时间里,载流导体正好处在比较强的气隙磁场中。

所以它所产生的转动脉动最小,平均值较大。

习惯上把这一点选作晶体管开始导通的基准点,定为。

在=0 度的情况下,电动机三相绕组轮流通电时所产生的总转矩如图6b 所示。

图 6 三相直流无刷电动机半空桥转矩如若晶体管的导通时间提前或滞后,则均将导致转矩的脉动值增加,平均值减小。

当=30 度时,电动机的瞬时转矩过零点,这就是说,当转子转到某几个位置时,电动机产生的转矩为零,电动机起动时会产生死点。

当>30度后,电动机转矩的瞬时值将出现负值,则总输出转矩的平均值更小。

因此,在三相半控的情况下,特别是在起动时,不宜大于30度,而在直流无刷电动机正常运行时,总是尽力把角调整到0度,使电动机产生的平均转矩最大。

当=0 度时,可以求得输出转矩的平均值:电动机在电动转矩的作用下转动后,旋转的转子磁场就要切割定子绕组,在各相绕组上感生出电动势,当其转速n 不变时,该电动势波形也是正弦波,相位同转矩相位一致。

在本电路中,每相绕组在一个周期中只通电,因此仅在这期间对外加电压起作用。

所以对外加电压而言,感生电动势波形如图7 所示。

图7 三相直流无刷电动机半控电路的反电动势同理可按下式求得感生电动势的平均值:从上面的平均转矩和平均反电动势,便可求得直流无刷电动机稳定运行时的电压平衡方程式,为此首先定义反电动势系数和转矩系数:对于某个具体的电动机,它们为常数。

当然,其大小同主回路的接法以及功率晶体管的换相方式有关。

直流无刷电机的工作原理直流无刷电机的工作原理直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。

碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。

交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。

现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。

微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。

此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/ 数字转换器(Analog-to-digital converter , ADC)脉冲宽度调制(pulse widemodulator , PWM)•等。

直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。

直流无刷电机的控制结构直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P) 影响:N=120 .f / P 。

在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。

直流无刷电机即是将同步电机加上电子式控制( 驱动器) ,控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。

也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速直流无刷驱动器包括电源部及控制部如图(1):电源部提供三相电源给电机,控制部则依需求转换输入电源频率。

电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。

不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成 3 相电压来驱动电机。

换流器(inverter)—般由6个功率晶体管(Q1〜Q6)分为上臂(Q1、Q3 Q5)/下臂(Q2、Q4 Q6)连接电机作为控制流经电机线圈的开关。

控制部则提供PWM脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。

直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。

但这只是用来做为速度控制并不能拿来做为定位控制。

图一直流无刷电机的控制原理要让电机转动起来,首先控制部就必须根据hall-sensor 感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如下(图二)inverter 中之AH BH CH这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。

当电机转子转动到hall-sensor 感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。

基本上功率晶体管的开法可举例如下:AH、BL 一组f AH CL一组f BH CL一组f BH AL 一组f CH AL 一组f CH BL 一组但绝不能开成AH AL或BH BL或CH CL。

此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上下臂短路而使功率晶体管烧毁。

图二当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command与hall-sensor 信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH CL或BH CL或……)开关导通,以及导通时间长短。

速度不够则开长,速度过头则减短,此部份工作就由PWM来完成。

PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。

高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor 信号变化的资料存取方式也影响到处理器效能与判定正确性实时性。

相关主题