尼龙改性认识一、尼龙的种类及特性1.1尼龙的种类尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。
脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。
脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。
脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。
1.2尼龙的特性尼龙属于聚酰胺,在它的主链上有氨基。
氨基具有极性,会因氢键的作用而相互吸引。
所以尼龙容易结晶,可以制成强度很高的纤维。
聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。
各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。
二、尼龙的现有主要种类及市场概况2.1HTNHTN属于杜邦尼龙家族。
杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。
Zytel®HTN51G=PA6T/MPMDT………..PPAZytel®HTN52G=PA6T/66……………….PPAZytel®HTN53G=PA……………………..HPPAZytel®HTN54G=PA6T/XT+PA6T/66…PPA作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。
杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。
2.2 ARLEN™ PA6TARLEN™为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。
ARLEN™主要应用于电子零件用ARLEN为一种对于苯二甲酸,己二酸及己二胺的改質尼龙6T,其熔点高于310℃。
电子零件。
ARLEN 的主要特性为优异的高温刚性,尺寸安定性以及耐化学品性。
2.3 PA9TPA9T由KURARAY公司首度开发成功并实现工业化。
商品名为Genestar,是由碳数9的直链脂肪族二酰胺的对苯二酸聚合而得。
Genestar的吸水率是PA46的1/10,是PA6T的1/3,也是各种聚酰胺中最低的,大幅扭转了尼龙为吸水性塑胶的观念,在多种用途的实用性评估上,均不会发生因吸水导致的尺寸变化、物性下降或膨胀起泡等异常,并在高温环境中有更安全的稳定性。
所以作为后起之秀的PA9T一面世就显示出强劲的市场潜力,初期用量就在数千吨的规模。
而随着其它市场的开发,用量增大,成本下降,汽车产业将成为其另一主要市场。
2.4 PPA聚对苯二酰对苯二胺,上述杜邦的HTN即属于此类。
另外形成产能的PPA生产商有苏威-阿莫科及EMS.,都有一定的市场占有率,但与前面几种高温聚酰胺比尚有一定的差距。
值得一提的是SOLVAY(苏威)公司推出的AMDEL®无卤阻燃规格FR-4133市场反映较佳。
EMS 最近也隆重推出无卤PA10T,市场接受情况不得而知。
2.5比较可以说,以PA46为首的高温聚酰胺的市场开发在初期抢占的是性价比比较接近的PPS和LCP的市场,经过多年来的发展和完善逐渐形成了自己独到的使用价值。
而在高温尼龙领域,PA46之后的几个种类如PA6T,PA9T,PPA等,开发初期也是对PA46市场的瓜分。
PA46因吸水率过大,在某些高温场合稳定性和可靠性受到怀疑,6T,9T,PPA很合时地填补了这个地带,并很快在市场上获得可观的成就,且挟在电子领域快速成功的余威,正在向汽车领域进军。
欧盟无铅制程的推行,使PA66、PBT,PPS等材料的耐热性因不能满足回流焊的要求而退出SMT产业,这给了高温尼龙一段黄金发展时期,使得06年至08年间各大高温尼龙均一直处于供不应求的态势。
现在正在紧张推进的无卤限制,使得高温尼龙市场又在经历一次动荡。
PA9T刚性强,脆性大,产能有限.6T因为其注塑工艺方面的要求,在同等要求下市场更容易接受PA9T,但现在随着无卤阻燃技术不断发展.以三井化学的强劲研发能力和目前的表现,6T可望拿回自己以前的市场.PA6T,46,9T,PPA,HTN等市场都会保持比较长期的上升趋势,即使在经济严重下滑时期,市场对高温尼龙的需求都未能受太大的影响,但随着营运因素和无卤化进程的洗牌,以及新的耐温聚酰胺品种不断被研发出来,将来这几种材料市场格局如何,难以判断。
三、尼龙常见的改性方法3.11PA6/UHMWPE共混物天津科技大学采用自制甲基丙烯酸缩水甘油酯接枝高密度聚乙烯(HDPE-g-GMA)作为增容剂来增容PA6/超高分子量聚乙烯(UHMWPE)共混物。
HDPE-g-GMA对PA6/UHMWPE增容作用明显,使其冲击强度提高1倍,断裂伸长率提高3%。
3.12MC尼龙/玻纤复合材料东北大学将磨碎玻纤与浇铸(MC)尼龙制成MC尼龙/玻纤复合材料。
当加入10%的玻纤后,制品收缩率降低,热变形温度提高20度、,将该材料制成制品后的拉伸强度提高26%,弯曲强度提高13%,压缩强度提高36%。
3.13 PA6/水镁石共混物大连理工大学等将大分子界面改性剂加入到PA6/水镁石共混物中。
共混物断裂伸长率提高12%以上,冲击强度提高1.5 kJ/m2,当大分子界面改性剂的用量为8份,水镁石添加量为40%时,阻燃效果最佳,氧指数高达37%。
3.14 PA6/改性MMT纳米复合材料北京理工大学等以自行合成的NJ¢1型插层剂对MMT进行改性。
加入12%改性MMT,PA6/改性MMT纳米复合材料的拉伸强度、弯曲强度及弯曲弹性模量较PA6分别提高了14%、16.2%和38.1%。
3.15超细滑石粉改性MC尼龙宁波职业技术学院将超细滑石粉加人MC尼龙中,以改性MC尼龙。
超细滑石粉的加人使MC尼龙的收缩率、吸水率都有所改善,热变形温度提高24度,冲击强度较纯MC尼龙提高11%。
3.16 MC尼龙/纳米氧化铝复合材料河北工程学院等采用原位聚合技术制备了纳米氧化铝增强MC尼龙复合材料。
当纳米氧化铝含量为4%时,MC尼龙/纳米氧化铝复合材料的拉伸强度、冲击强度和弯曲强度均达到最大值,分别比纯MC尼龙提高19%、33%和11%。
3.17 PA11/MMT纳米复合材料华北工学院采用熔体插层法制备PA11/MMT纳米复合材料。
MMT 含量为5%时,复合材料的冲击强度达最大值.是纯PA11冲击强度的2.5倍。
3.18新型增韧型PA6辽宁大学等采用新型双官能化增韧剂SWR¢3C对PA6进行增韧。
室温下SWR¢3C的质量分数为20%时,PA6的冲击强度达94.5KJ/m2,接近纯PA6的10倍,达到超韧PA的性能指标。
3.19玻纤增强PA66北京理工大学采用自制的新型膨胀型阻燃剂聚磷酸三聚氰胺(MPP)对玻纤增强PA66阻燃。
当添加25%MPP时,阻燃材料的氧指数为38.o%,达到UL94 v-O级。
3.20高阻隔性可吹塑PA6复合材料上海交通大学将(聚烯烃热塑性弹性体/丙烯酸酯类)共聚物(MST)与pA6进行共混,制得高阻隔性可吹塑PA6复合材料。
当MST含量为10%时,可得到综合性能优于PA6的可吹塑高阻隔性材料。
该材料可用作汽车燃油箱、农药瓶、药品瓶等。
3.21 PA6/UHMWpE/HDPE-g-MAH共混物天津科技大学采用溶液法制备马来酸酐接枝聚乙烯(HDPE-g-MAH),将其与PA6/UHMPWE共混,制得PA6/UHMWPE/HDPE-g-MAH共混物。
当HDPE-g-MAH的接枝率为0.5%-1.5%时,共混物的吸水性能明显改善。
3.22 PAIO1O/PP-g-GMA共混物长春工业大学等将聚丙烯(PP)及甲基丙烯酸缩水甘油接枝聚丙烯(PP-g-GMA)与PA1010共混。
PA1O1O/PP-g-GMA共混物的力学性能比PAl010/PP共混物有明显的改善,接枝率越大,PP-g-GMA与PAl010的相容性越好。
3.23 PA6/PAMAM共混合金北京理工大学以树枝状聚酰胺-胺(PAMAM)树形分子与PA6共混,制得PA6/PAM-AM共混合金。
当PAMAM在低用量时,可提高合金的结晶速度,对共混合金起增塑作用,当PAMAM为高用量时,对共混合金起到增强作用。
3.24 PA6/SEBS共混物四川大学将马来酸酐接枝部分氢化(苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂加入到PA6/SEBS共混物中。
加入SEBS -g-MAH对共混物的熔融峰,结晶峰和结晶度都有影响。
3.25抗静电PA6/ZnOw复合材料华南理工大学采用熔融共混法制备了PA6/氧化锌晶须(ZnOw)复合材料。
随着ZnOw用量的增加,复合材料的表面电阻率和体积电阻率明显下降,下降幅度达4个数量级。
当ZnOw含量为5.5%时缺口冲击强度达到最大值16.5KJ/m2,为纯PA6的206.3%。
3.26半芳香型透明尼龙郑州大学采用多元共缩聚法制备半芳香型透明尼龙,在一定范围内,其力学性能随注塑压力提高而提高,通过常温和高温调湿处理,其冲击强度提高。
3.27 PA6/PA66/MMT纳米复合材料青岛大学用自制有机MMT与PA6/PA66通过熔融挤出制备出剥离型PA6/PA66/MMT纳米复合材料。
加入纳米级MMT后复合材料拉伸强度提高了17.1%;拉伸弹性模量提高了将近30%;拉伸屈服强度是纯PA6/PA66的1.22倍。
3.28玻纤、粉煤灰增强MC尼龙复合材料信息产业部电子第五研究所利用MC尼龙静态浇铸的原理,通过阴离子聚合制得了玻纤、粉煤灰增强MC尼龙。
加入30%玻纤和10%粉煤灰可使复合材料的拉伸强度提高13.8%,弯曲强度提高32.8%,弯曲弹性模量提高110%,无缺口冲击强度提高442%,硬度提高49.6%。
四、自己对尼龙改性的认识由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构:、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。
特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。
尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,某些性能不能满足相关行业发展的要求。
因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。