武汉工程职业技术学院(铁山校区培训部教案)班级:程潮铁矿高技能人才班任课教师:付斌日期:2009年8月二00九年下学期教学进度计划表任课教师:付斌班级:程潮高技能人才班2009.8第一讲 直流电路教学内容: 1、掌握电阻串、并联的特点2、熟悉简单直流电路的分析计算方法3、掌握复杂直流电路的分析计算方法重难点:复杂直流电路的分析计算方法 教学进程:见下面第一节 电阻的串联电阻串联电路的特点设总电压为U 、电流为I 、总功率为P 。
1. 等效电阻: R =R 1 + R 2 + … + R n2. 分压关系: I R UR U R U R U n n ===⋅⋅⋅==2211 3. 功率分配:22211I RP R P R P R P n n ===⋅⋅⋅== 特例:两只电阻R 1、R 2串联时,等效电阻R = R 1 + R 2 , 则有分压公式U R R R U U R R R U 21222111 +=+=,第二节 电阻的并联电阻并联电路的特点设总电流为I 、电压为U 、总功率为P 。
1. 等效电导: G = G 1 + G 2 + … + G n 即 nR R R R 111121+⋅⋅⋅++= 2. 分流关系: R 1I 1 = R 2I 2 = … = R n I n = RI = U 3. 功率分配: R 1P 1 = R 2P 2 = … = R n P n = RP = U 2特例:两只电阻R 1、R 2并联时,等效电阻2121R R R R R +=,则有分流公式 第三节 电阻的混联在电阻电路中,既有电阻的串联关系又有电阻的并联关系,称为电阻混联。
对混联电路的分析和计算大体上可分为以下几个步骤:1. 首先整理清楚电路中电阻串、并联关系,必要时重新画出串、并联关系明确的电路图;2. 利用串、并联等效电阻公式计算出电路中总的等效电阻;3. 利用已知条件进行计算,确定电路的总电压与总电流;4. 根据电阻分压关系和分流关系,逐步推算出各支路的电流或电压。
第四节 直流电桥平衡条件惠斯通电桥法可以比较准确的测量电阻,其原理如图2-22所示。
R 1、R 2、R 3、为可调电阻,并且是阻值已知的标准精密电阻。
R 4为被测电阻,当检流计的指针指示到零位置时,称为电桥平衡。
此时,B 、D 两点为等电位,被测电阻为3124R R R R =惠斯通电桥有多种形式,常见的是一种滑线式电桥。
第五节 负载获得最大功率的条件容易证明:在电源电动势E 及其内阻r 保持不变时,负载R 获得最大功率的条件是R = r ,此时负载的最大功率值为RE P 42max = 电源输出的最大功率是max22222P RE r E P EM===第六节 基尔霍夫定律一、常用电路名词以图3-1所示电路为例说明常用电路名词。
1. 支路:电路中具有两个端钮且通过同一电流的无分支电路。
如图3-1电路中的ED 、AB 、FC 均为支路,该电路的支路数目为b = 3。
2. 节点:电路中三条或三条以上支路的联接点。
如图3-1电路的节点为A 、B 两点,该电路的节点数目为n = 2。
3. 回路:电路中任一闭合的路径。
如图3-1电路中的CDEFC 、AFCBA 、EABDE 路径均为回路,该电路的回路数目为l = 3。
4. 网孔:不含有分支的闭合回路。
如图3-1电路中的AFCBA 、EABDE 回路均为网孔,该电路的网孔数目为m = 2。
二、基尔霍夫电流定律(节点电流定律) 1.电流定律(KCL)内容电流定律的第一种表述:在任何时刻,电路中流入任一节点中的电流之和,恒等于从该节点流出的电流之和,即∑∑=流出流入I I例如图3-2中,在节点A 上:I 1 + I 3 = I 2 + I 4 + I 5电流定律的第二种表述:在任何时刻,电路中任一节点上的各支路电流代数和恒等于零,即0=∑I一般可在流入节点的电流前面取“+”号,在流出节点的电流前面取“-”号,反之亦可。
例如图3-2中,在节点A 上:I 1 - I 2 + I 3 - I 4 - I 5 = 0。
在使用电流定律时,必须注意:(1) 对于含有n 个节点的电路,只能列出(n - 1)个独立的电流方程。
(2) 列节点电流方程时,只需考虑电流的参考方向,然后再带入电流的数值。
为分析电路的方便,通常需要在所研究的一段电路中事先选定(即假定)电流流动的方向,叫做电流的参考方向,通常用“→”号表示。
电流的实际方向可根据数值的正、负来判断,当I >0时,表明电流的实际方向与所标定的参考方向一致;当I< 0时,则表明电流的实际方向与所标定的参考方向相反。
2.KCL的应用举例(1) 对于电路中任意假设的封闭面来说,电流定律仍然成立。
如图3-3中,对于封闭面S来说,有I1 + I2 = I3。
(2) 对于网络 (电路)之间的电流关系,仍然可由电流定律判定。
如图3-4中,流入电路B中的电流必等于从该电路中流出的电流。
(3) 若两个网络之间只有一根导线相连,那么这根导线中一定没有电流通过。
(4) 若一个网络只有一根导线与地相连,那么这根导线中一定没有电流通过。
三、基夫尔霍电压定律(回路电压定律)1. 电压定律(KVL)内容在任何时刻,沿着电路中的任一回路绕行方向,回路中各段电压的代数和恒等于零,即=∑U以图3-6电路说明基夫尔霍电压定律。
沿着回路abcdea绕行方向,有Uac= U ab + U bc = R1I1 + E1,U ce = U cd + U de = -R2I2 -E2,U ea = R3I3 则U ac + U ce + U ea = 0即R1I1 + E1 -R2I2 -E2 + R3I3 = 0上式也可写成R 1I1-R2I2 + R3I3 = -E1 + E2对于电阻电路来说,任何时刻,在任一闭合回路中,各段电阻上的电压降代数和等于各电源电动势的代数和,即。
∑∑=ERI2.利用∑RI = ∑E列回路电压方程的原则(1)标出各支路电流的参考方向并选择回路绕行方向(既可沿着顺时针方向绕行,也可沿着反时针方向绕行);(2)电阻元件的端电压为±RI,当电流I的参考方向与回路绕行方向一致时,选取“+”号;反之,选取“-”号;(3)电源电动势为±E,当电源电动势的标定方向与回路绕行方向一致时,选取“+”号,反之应选取“-”号。
第七节支路电流法以各支路电流为未知量,应用基尔霍夫定律列出节点电流方程和回路电压方程,解出各支路电流,从而可确定各支路(或各元件)的电压及功率,这种解决电路问题的方法叫做支路电流法。
对于具有b条支路、n个节点的电路,可列出(n-1)个独立的电流方程和b- (n - 1)个独立的电压方程。
第八节电压源和电流源及其等效变换一、电压源通常所说的电压源一般是指理想电压源,其基本特性是其电动势 (或两端电压)保持固定不变E或是一定的时间函数e(t),但电压源输出的电流却与外电路有关。
实际电压源是含有一定内阻r0的电压源。
二、电流源通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s)或是一定的时间函数i s(t),但电流源的两端电压却与外电路有关。
实际电流源是含有一定内阻r S的电流源。
三、两种实际电源模型之间的等效变换实际电源可用一个理想电压源E和一个电阻r0串联的电路模型表示,其输出电压U 与输出电流I之间关系为U = E-rI实际电源也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,其输出电压U与输出电流I之间关系为U = rS IS-r S I对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是r= r S , E = r S I S 或I S = E/r0第九节叠加定律叠加定理的内容当线性电路中有几个电源共同作用时,各支路的电流(或电压)等于各个电源分别单独作用时在该支路产生的电流(或电压)的代数和(叠加)。
在使用叠加定理分析计算电路应注意以下几点:(1) 叠加定理只能用于计算线性电路(即电路中的元件均为线性元件)的支路电流或电压(不能直接进行功率的叠加计算);(2) 电压源不作用时应视为短路,电流源不作用时应视为开路;(3) 叠加时要注意电流或电压的参考方向,正确选取各分量的正负号。
第十节戴维南定理一、二端网络的有关概念1.二端网络:具有两个引出端与外电路相联的网络。
又叫做一端口网络。
2.无源二端网络:内部不含有电源的二端网络。
3.有源二端网络:内部含有电源的二端网络。
二、戴维宁定理任何一个线性有源二端电阻网络,对外电路来说,总可以用一个电压源E0与一个电阻r0相串联的模型来替代。
电压源的电动势E0等于该二端网络的开路电压,电阻r0等于该二端网络中所有电源不作用时(即令电压源短路、电流源开路)的等效电阻(叫做该二端网络的等效内阻)。
该定理又叫做等效电压源定理。
第十一节节点电位法一、节点电位法的内容二、节点电位法的应用本章小结一、基夫尔霍定律1.电流定律2.电压定律二、支路电流法三、叠加定理四、戴维宁定理五、两种实际电源模型的等效变换六、节点电位法作业:见教材P48-53第二讲 单相正弦交流电路教学内容: 1、掌握三个纯电路的特点2、熟悉R-L-C 串联电路的分析计算方法3、了解提高功率因素的意义及方法重难点:R-L-C 串联电路的分析计算方法 教学进程:见下面第一节 正弦交流电动势的产生一、交流电的产生如果电流的大小及方向都随时间做周期性变化,则称之为交流电。
二、正弦交流电大小及方向均随时间按正弦规律做周期性变化的电流、电压、电动势叫做正弦交流电流、电压、电动势,在某一时刻t 的瞬时值可用三角函数式(解析式)来表示,即i(t) = Imsin(ωt + ϕi0) u(t) = Umsin(ωt + ϕu0) e(t) = Emsin(ωt + ϕe0)第二节 正弦交流电的基本物理量.一、周期与频率 1.周期正弦交流电完成一次循环变化所用的时间叫做周期,用字母T 表示,单位为秒(s)。
显然正弦交流电流或电压相邻的两个最大值(或相邻的两个最小值)之间的时间间隔即为周期,由三角函数知识可知ωπ=2T2.频率交流电周期的倒数叫做频率(用符号f 表示),即T f 1=它表示正弦交流电流在单位时间内作周期性循环变化的次数,即表征交流电交替变化的速率(快慢)。
频率的国际单位制是赫兹(Hz)。
角频率与频率之间的关系为ω = 2πf 二、有效值在电工技术中,有时并不需要知道交流电的瞬时值,而规定一个能够表征其大小的特定值——有效值,其依据是交流电流和直流电流通过电阻时,电阻都要消耗电能(热效应)。
设正弦交流电流i(t)在一个周期T 时间内,使一电阻R 消耗的电能为QR ,另有一相应的直流电流I 在时间T 内也使该电阻R 消耗相同的电能,即QR = I2RT 。