当前位置:文档之家› 概率论与数理统计学习知识资料要点

概率论与数理统计学习知识资料要点

知识要点一 概念:1 随机事件:用,,A B C 等表示 互不相容: AB =Φ互逆: AB =Φ且A B ⋃=Ω ,此时,B A = 互逆 ⇒互不相容 ,反之不行相互独立: ()()P A B P A =或()()()P AB P A P B =2 随机事件的运算律:(1) 交换律 :,A B B A AB BA ⋃=⋃= (2) 结合律 :()(),()()A B C A B C AB C A BC ⋃⋃=⋃⋃=(3) 分配律 :(),()()()A B C AB AC A BC A B A C ⋃=⋃⋃=⋃⋃(4 ) De Morgen 律(对偶律)B A B A =⋃ B A AB ⋃= 推广:11n ni i i i A A ===U I11nni i i i A A ===IU3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ⊂ 则()()P A P B ≤ 条件概率 ()()()P AB P A B P B =4 随机变量: 用大写,,X Y Z 表示 .若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X =若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立⇒不相关 反之不成立但当X 与Y 服从正态分布时 ,则相互独立 ⇔不相关相关系数:1),(≤Y X R 且当且仅当bX a Y +=时1),(=Y X R ,并且⎩⎨⎧<->=0,10,1),(b b Y X R二 两种概率模型古典概型 :()MP A N=:M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n mn n P m C p q -=n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率2112()()m n m m P m m m P m =≤≤=∑n 次独立试验序列中事件A 至少发生r 次的概率1()()1()nr n n m rm P m r P m P m -==≥==-∑∑特别的 ,至少发生一次的概率 (1)1(1)nP m p ≥=--三 概率的计算公式:加法公式:()()()()P A B P A P B P AB ⋃=+- 若B A ,互不相容 ,则)()()(B P A P B A P +=+ 推论:)()(A P A P -=1 推广:)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃若B A ,,C 互不相容,则()()()()P A B C P A P B P C ++=++乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B =推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L全概率公式:若 A 为随机事件,n B B B ΛΛ21,互不相容的完备事件组,且 0)(>i B P 则 )()()()()()()(2211n n B A P B P B A P B P B A P B P A P +++=ΛΛ 注: 常用,B B 作为互不相容的完备事件组有诸多原因可以引发某种结果 ,而该结果有不能简单地看成这诸多事件的和 ,这样的概率问题属于全概问题. 用全概率公式解题的程序:(1) 判断所求解的问题 是否为全概率问题(2) 若是全概率类型,正确的假设事件A 及i B ,{}i B 要求是互斥的完备事件组 (3) 计算出(),()i i P B P A B(4) 代入公式计算结果四 一维随机变量:1 分布函数:)()(x X P x F ≤= 性质:(1) 1)(0≤≤x F(2) 若21x x < ,则)()(21x F x F ≤(3) 若X 是离散随机变量,则)(x F 是右连续的若X 是连续随机变量,则)(x F 是连续的 (有时,此性质也可用来确定分布函数中的常数)(4)1)(lim =+∞→x F x 即 1)(=+∞F0)(lim =-∞→x F x 即 0)(=-∞F ( 此性质常用来确定分布函数中的常数)利用分布函数计算概率:()()()P a X b F b F a <≤=- 一维离散随机变量:概率函数:()()1,2i i p x P X x i ===L (分布律)性质:()0i p x ≥()1iip x =∑ (此性质常用来确定概率函数中的常数)已知概率函数求分布函数 ()()()i i iix xx xF x P X x p x ≤≤===∑∑一维连续随机变量: 概率密度()f x性质:(1) 非负性()0f x ≥ (2)归一性:()1f x dx +∞-∞=⎰(常用此性质来确定概率密度中的常数)分布函数和概率密度的关系: ()()f x F x '= ()()xF x f x dx -∞=⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用概率密度求概率 ()()b aP a X b f x dx <≤=⎰五 一维随机变量函数的分布:离散情形 : 列表 、整理、合并连续情形()Y g X =: 分布函数法. 先求Y 的分布函数 ,再求导 六 二维随机变量: 联合分布函数 :(,)(,)F xy P X x Y y =≤≤性质: (1) (,)0F -∞-∞= (2) (,)0F x -∞= (3) (,)0F y -∞= (4) (,)1F +∞+∞=(此极限性质常用来确定分布函数中的常数)边缘分布函数: ()(,)X F x F x =+∞ ),()(y F y F Y +∞= 二维离散随机变量:联合概率函数 (,)(,)i j i j p x y P X x Y y === 列表 边缘概率函数: ()(,)X i ijjp x p x y =∑ ()(,)Yi i j ipy p x y =∑二维连续随机变量: 联合概率密度 (,)f x y性质 (1)(,)0f x y ≥(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(常用此性质来确定概率密度中的常数)联合分布函数与联合概率密度的关系),(),(y x F y x y x f ∂∂∂=2⎰⎰∞-∞-=x y dxdy y x f y x F ),(),((注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数)利用联合概率密度求概率((,))(,)RP x y R f x y dxdy ∈=⎰⎰已知联合概率密度求边缘概率密度()(,)X f x f x y dy +∞-∞=⎰()(,)Y f y f x y dx +∞-∞=⎰(注意:当被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 二维随机变量函数的分布 1 离散情形 2 连续情形:七 随机变量的数字特征: 若X 为离散随机变量:1()()niii E X x p x ==∑若X 为连续随机变量: ()()E X xf x dx +∞-∞=⎰二维情形 若(,)~(,)X Y f x y 为二维连续随机变量,则 ()()(,)X E X xf x dx xf x y dxdy +∞+∞+∞-∞-∞-∞==⎰⎰⎰()(,)E Y yf x y dxdy +∞+∞-∞-∞=⎰⎰若(,)~(,)i j X Y p x y 为二维离散随机变量,则()()(,)i X i i i j iijE X x p x x p x y ==∑∑∑()()(,)j Y j j i j jjiE Y y p y y p x y ==∑∑∑随机变量的函数的数学期望:若X 为离散随机变量:[]()()()iiiE g X g x p x =∑若X 为连续随机变量 []()()()E g X g x f x dx +∞-∞=⎰方差:定义 []{}2()()D X EX E X =-方差的计算公式:22()()()D X E X E X =- 注意这个公式的转化:22()()()E X D X E X =+协方差:)()()(),cov(Y E X E XY E Y X -=,相关系数)()(),cov(),(Y D X D Y X Y X R =关于期望的定理: 关于方差的定理 (1) ()E C C = (1) ()0D C =(2)()()E CX CE X = (2) 2()()D CX C D X =(3) ()()()E X Y E X E Y +=+ 相互独立: ()()()D X Y D X D Y +=+ ()()()E X Y E X E Y -=- ()()()D X Y D X D Y -=+ ()()()E X Y E X E Y λμλμ+=+ (注意:反之不成立) 相互独立()()()E XY E X E Y =(注意:反之不成立)一般地:),cov(2)()()(Y X Y D X D Y X D ++=+ 八 要熟记的常用分布及其数字特征:01-分布 (1,)B p 1()0,1x xp x p q x -== ()()E X p D X pq == 二项分布(,)B n p ()0,1x x n x i n p x C p qx n -==L ()()E X np D X npq ==泊松分布()p λ ()0,1!xp x e x x λλ-==L ()()E X D X λλ==均匀分布:(,)U a b 1()0a x b f x b a ⎧<≤⎪=-⎨⎪⎩其他 ()01x aa xb b a F X x ax b -⎧≤<⎪-⎪=<⎨⎪≥⎪⎩2()()()212a bb a E X D X +-==指数分布:()e λ 0()00xe xf x x λλ-⎧>=⎨≤⎩ 10()00x e x F x x λ-⎧->=⎨≤⎩ 211()()E X D X λλ==正态分布:2~(,)X N μσ22()2()x f x μσ--=22()2()x xF x edx μσ---∞=2()()E X D X μσ==特别地(0,1)N22()x x ϕ-=22()x xx edx --∞Φ=()(1)(x x Φ-=-Φ)()0()1E X D X ==若2~(,)X N μσ ,则1212()()x x X P x X x P μμμσσσ---<<=<<21()()x x μμσσ--=Φ-Φ九 正态随机变量线性函数的分布;十 统计部分:统计量 ,三大分布的定义,无偏性 有效性 矩估计 最大似然估计 区间估计 假设检验矩估计的步骤:(思路:用样本的k 阶原点矩去估计总体的k 阶原点矩) 若总体中只含一个未知参数; (1) 计算总体的一阶原点矩)(X E(2) 令∑===ni i X n V X E 111)(,从中解得未知参数的矩估计量。

相关主题