当前位置:文档之家› 第二章 稀土元素的结构特征

第二章 稀土元素的结构特征


二、稀土元素的电子层结构特点和 价态
15个La系原子的电子层结构可写为: [Xe]4fn5d0-16s2
其中[Xe]为氙原子的电子层结构,1s22s22p63s23p63d104s24p64d105s25p6。
• 而最外层电子都已填充到6s2,5d还空着或仅有一个电子,只有4f层 不同,当n=0–14时,元素由LaLu。 • Sc的最外层(4s)2,次外层(3s)23p63d1 • Y的最外层5s2,次外层4s24p64d1 17个稀土元素原子的最外电子层结构相同,均为2个s电子,它们与别的 元素化合时通常都失去这最外层的2个s电子,它们的次外层有的为一 个d电子,无d电子时则失去一个4f电子(这是借助4f n4f n–15d1过 渡),故正常的原子价是3价。这是稀土元素的共性,也是造成化学 性质相似的根本原因。
磁学性质
• 弧立稀土离子的基态磁矩是研究稀土磁性的基础, 故先讨论此问题。原子或离子的磁矩主要由其电 子结构所决定。由于满壳层电子的磁矩总和为零, 所以只需考虑4f层上电子对其磁矩的贡献即可。 • 若4f层上只有一个电子,则其电子轨道磁矩 其轨道角动量有 下列关系: 与
L—为离子轨道总角动量量 子数 S—为离子自旋总角动量量 子数 J—为离子总角动量量子数
第二节 稀土元素的材料学性能和理 化性质
• 一、稀土元素的几何性质 • 二、稀土元素的物理性质
稀土元素的几何性质
在常温、常压条件下,稀土金属有下列五种晶体结构: (1)密排六方结构—原子堆垛次序为ABABAB等,符合此 结构的有钪、钇和从钆到镥的所有重稀土金属(Yb除外); (2)面心立方结构—原子堆垛为ABCABC等,铈和镱属此 结构; (3)双六方结构—原子堆垛为ABACABAC等,镧、镨、钕、 钷等; (4)斜方结构—原子堆垛为ACACBCBABACA等,唯钐有 这一独特结构; (5)体心立方结构—原子堆垛为非密排结构,唯有铕属此 结构。 当温度、压力变化时,多数稀土金属要发生晶型转变,称为 固态相变。
镧系收缩
• 从表2–1中所列RE3+离子半径的数值可知, 从La3+Lu3+,其离子半径依次减少。这种 镧系元素离子半径随原子序数的增加而逐 渐减小的现象称为镧系收缩。 • 其原因是随原子序数的增加,核电荷也相 应增加,然而电子层数保持不变,所增加 的电子(为保持原子为电中性)均填入内 层4f层上,致使原子核对外层5s25p6电子的 引力增大,造成电子云向核靠近,出现了 离子半径减小的趋向。
• (3)根据选择定则,4f–4f能级之间的跃迁,因△L=0的电偶极跃迁 属禁戒的。然而事实上则可观察到这种跃迁。这主要是由于4f组态与 相反宇称的组态g或d发生混合,使对称性偏离反演中心,结果使原属 禁戒的f–f跃迁变为允许。这种强制性的跃迁几率很小,所以激发态的 寿命较长且呈狭窄线状。一般原子激发态寿命平均为10-8—10-10s,而 4f激发态寿命长达10-2—10-6s。这是它可作为激光和荧光材料的主要 依据。
1.力学性质 稀土金属多数为银白色、有光泽的金属。硬度不大,(除Eu、 Yb更小外),硬度随原子序数的增加而增加。稀土金属具 有延展性,可拉成丝也可压成薄板。 前面曾提到由于铕、镱的原了半径异常,不服从镧系收缩, 故原子体积增大,密度减少,硬度也减小。其熔点、沸点、 电阻率也都明显异常,这与其原子参与金属键的电子数目 与其它稀土元素不同有关。 2.热学性质 稀土金属的熔点都较高,大体上随原子序数的增加而增高 (除Eu、Yb外)。 稀土金属的沸点和升华热与原子序数的关系无明显规律。 3.稀土元素的电学性质 稀土金属的导电性并不良好,常温时其电阻率都较高。除镱 外,其电阻率为50~130· cm,比铜、铝的电阻率高1— 2个数量级。另外,它们有正的温度系数,La在接近4.6K 时具有超导性能。
• (6)稀土离子在晶体中或溶液中对白光的 某些波长各有不同的吸收,而对其它波长 有强烈的散射。从而呈现不同的颜色,三 价稀土离子的颜色如下:
稀土元素的化学性质
1.稀土元素的活泼性 稀土元素是典型的金属元素,其金属活泼性仅次于碱金属和碱土金属,并且由钪、钇、镧 递增,由镧→镥递减,即镧是最活泼的稀土金属。 • 稀土金属在室温下就能与空气中的氧作用,继续氧化的程度取决于所生成的氧化物的 结构和性质而有不同。La、Ce、Pr、Nd氧化得很快,而另一些如Y、Dy、Gd、Tb等 则氧化的慢一些。 • 稀土金属在室温下即可吸氢,在250—300℃其相互作用加剧,并生成ReH2.8(对La、 Ce、Pr)或ReH2型氢化物。氢化物在真空中加热到高于1000℃时分解放氢。 • 在硫蒸气中加热稀土金属会生成Re2S3、Re3S4、ReS型硫化物,具有很高的熔点 (1900—2500℃)和耐火性。 • 稀土金属在750—1000℃时能与N2反应,生成ReN型氮化物。稀土金属与碳、碳氢化 物、CO、CO2在加热时相互作用,形成多种碳化物(主要为ReC2)。 • 所有卤素X2(F2、Cl2、Br2、I2)在温度高于200℃时均与稀土金属发生强烈反应,生 成REX3型卤化物。除氟外,所有卤化物都有很强的吸水性,并易水解生成ReOX型卤 氧化物,只有Sm、Eu、Yb生成低价卤化物ReX2。 • 稀土金属易溶于稀的盐酸、硫酸和硝酸中,微溶于氢氟酸和磷酸,这是由于生成难溶 盐的保护膜。稀土金属与碱不发生反应。 • 稀土金属还是强还原剂,能将Fe、Ni、Co、Cr、V、Nb、Ta、Ti、Zr、Si等元素的氧 化物还原为金属。能与许多金属生成金属间化合物,为应用开辟了新天地。 • 稀土金属和其它非金属元素如Cl2、S、N、P、C、Si、B等在一定温度下反应直接生成 熔点高、密度小、化学性质稳定的二元化合物,这是它们可在钢、铁、有色冶炼中被 添加起变质净化作用的原因。
稀土离子的变价
• 稀土元素之间电子层结构上存在差异,4f电子的 数目对价态也有一定影响。 • 根据光谱学上的洪德(Hund)规则,在原子或离 子的电子层结构中,当同一层处于全空、全满或 半满的状态时比较稳定。用到4f层上,则有La3+、 Gd3+、Lu3+的基态电子各为[Xe]4f0、[Xe]4f7 和 [Xe]4f14[见表2–1]。因此它们是比较稳定的3价态。 • 它们下方的元素(Ce3+、Pr3+、Tb3+)离子比稳 定态的离子多一个或两个电子,所以易被氧化为4 价态; • 它们上方的元素(Sm3+、Eu3+、Yb3+)离子则比 稳定态少1或2个电子,所以易被还原成2价态。 这就造成了稀土元素“不正常价态”的存在。
• RE—Fe相图中富铁端形成的RE2Fe17和REFe2化合物 (SmFe2、TbFe2) • RE—Co、RE—Ni相图中生成的RECo5、RENi5(SmCo5、 LaNi5) 都是极为重要的稀土功能材料。如SmCo5永磁材料, LaNi5贮氢材料, SmFe2、TbDyFe2磁致伸缩材料, Nd2Fe14B永磁材料等。
ቤተ መጻሕፍቲ ባይዱ
• (5)f–d组态之间的跃迁,根据选择定则,这种△L=1的跃迁是允许 跃迁。但光谱表现为宽谱带,短寿命,强度较大并受晶体场影响较大 的特点。在稀土离子的激光光谱中,其f–f跃迁谱带窄,强度弱。为了 克服这一弊端,人们利用f–d跃迁来提高对激发光能的吸收,然后将 这部分能量传递给稀土激活离子,这是提高稀土发光率的主要途径。
稀土元素的光谱特性
• 未充满的4f壳层及由此而产生的多种多样的电子能级,所 以稀土元素能够发光。可作为优良的荧光、激光和电光源 材料以及彩色玻璃和陶瓷釉料。
• 稀土元素的电子能级有如下特征:
(1)角量子数L=3的4f壳层共有7个轨道,它们的磁量子数分别为–3, –2,–1,0,1,2,3。15个镧系元素3价离子当处于基态时,4f 电子在各轨道上的分布情况见表2–4。 :总磁量子数,它的最大值即离子的轨道总角动量量子数L
• (4)在稀土离子的4f壳层外面,还有5s25p6电子层,由于后者的屏蔽 作用,故受外界的电场、磁场和配位场(化合物中其它元素的势场) 影响较小。因此,稀土元素化合物的吸收光谱和自由离子的吸收光谱 基本一样,都是线状光谱。这明显不同于d过渡元素的离子。由于d层 外无其它电子层屏蔽,故受配位场影响很大,所以同一元素在不同化 合物中的吸收光谱不同,将其吸收光谱内气体自由离子时的线状光谱 变为化合物或溶液中的带状光谱。
• 电子自旋磁矩
与其自旋角动量
• 它们的矢量和是该离子的总磁矩

是电子的总角动量
• 若4f层上有多个电子,电子的自旋和轨道运 动也有耦合,全体该层中的电子的总角动 量才是守恒不变的量。由于稀土的4f电子服 从L–S耦合, • 分别是该离子的轨道角动量 和自旋角动量,离子的磁矩也应为:
• 它仍然同该离子的总角动
第二章 稀土元素的结构特征 与材料学性能
第一节 稀土元素的结构特点

17个稀土元素均位于元素周期表同一族一ⅢB族,造成物化性质有一定相似性。特别是 镧系的15个元素(La—Lu)均位于周期表的同一格内,它们的性质更为接近,分离成 单一元素时十分困难。但是,它们本身是17个不同的元素,尤其在电子结构,原子及 离子半径等方面又有显著的不同,所以各自有自己独特的性能。这正是我们要重点研 究的内容。
原子半径对稀土合金结构的影响
• 稀土金属在过渡族金属中的固溶度极低,但能形成一系列 金属间化合物。
稀土金属的原子半径在173.5pm~187.9pm之间,铁原子半径只有 117pm,稀土离子的半径在85pm~106pm之间,而Fe3+、Co2+、 Mn2+、Al3+离子半径分别为60pm、72pm、80pm、50pm。由于 稀土原子和离子的半径都远大于常见的金属原子和离子的半径, 这种半径差(原子R寸 因素)引起的形变能较大,如:
• 左上角的数字表示光谱项的多重性,它等 于2S+1,右下角的数字代表J的数值。例如 Nd3+的基态光谱项用“4I9/2”表示。
相关主题