当前位置:文档之家› 叶绿素荧光研究技术

叶绿素荧光研究技术


当一个叶绿素分子a的电子从激发态回到到基态的去激过程 中,一小部分激发能(3-9%)以红色的荧光形式耗散。
在生理温度下,叶绿素荧光的波长 峰值大约为685nm的红光,并且一致延 伸到800nm的远红光处
荧光是研究光能分配的探针
激发能
热耗散
光化学反应 形成同化力
荧光
CO2固定 光呼吸 M应ehler 反 N代谢
Fv/Fm:暗适应下PSⅡ反应中心完全开放时的最大 光化学效率,反映PSⅡ反应中心最大光能 转换效率。
Fv/Fo:代表PSⅡ潜在光化学活性,与有活性的反 应中 心的数量成正比关系。
Fo’: 光适应下初始荧光。
Fm’: 光适应下最大荧光。
Fv’=Fm’-Fo’:光适应下可变荧光。
Fv’/Fm’:光适应下PSⅡ最大光化学效率,它反映有 热耗散存在时PSⅡ反应中心完全开放时的 光化学 效率,也称为最大天线转换效率。
2.脉冲调制式荧光仪(如FMS-2),可以避免 上述问题。在测定时,仪器提供一种脉冲调 制式光,能诱导出的脉冲式的荧光。当有其 它光线同时存在时,会产生以下三种光信号:
1.自然光中具有荧光波长的红光信号 2.自然光诱导的非脉冲荧光信号 3.脉冲调制光诱导的脉冲荧光信号
1:调制测量光;
(5) 2:作用光;
率和热耗散能力的变化。
如何测定叶绿素荧光?
现有两类荧光仪可以用来测定叶绿素荧光。
1.续激发式荧光仪(如PEA),必须将测定 叶片在避光下测定,在照光条件下,仪器无 法区分叶绿素荧光和自然光中与荧光波长相 同的红光和远红光。
但是这类荧光仪有很高的分辨率,每秒钟 能够测定10万次荧光变化,因此是研究光合 机构中电子传递瞬间变化的有力工具。
t (Fs)
主要荧光参数及其意义
Fo: 初始荧光产量(Original fluorescence yield ) 也 称基础荧光,是PSⅡ反应中心(经过充分暗适 应以后)处于完全开放状态时的初始荧光产量。 Fm:最大荧光产量(Maximal fluoreseence yield ), 是PSⅡ反应中心完全关闭时的荧光产量。通常叶片 经暗适应20min后测得。 Fv=Fm-Fo:可变荧光,反映PSⅡ的电子传递最大潜 力。经暗适应后测得。
Ft(或Fs ): 稳态荧光产量 steady-state fluorescence yield。
φPSⅡ=(Fm’-Fs)/Fm’ : PSⅡ实际光化学效率,它反
映在照光下PSⅡ反应中心部分关闭的情况下的 实际光化学效率。 qP =(Fm’ -Fs)/(Fm’-Fo’) : photochemical quenching 光化学猝灭系数,它反映了PSⅡ反应中心的开 放程度。 1- qP 用来表示PSⅡ反应中心的关闭程度。
3:饱和脉冲光;
4:远红光;
5:检测器及放大器;
6:短波通过滤光片;
(6)
7)
7:长波通过滤光片;
8:样品
8
脉冲调整式叶绿素荧光仪原理图
高选择性监测器可以排除前两种信号 而只保留脉冲过程中所产生的荧光信号。 用脉冲调制式方法,可以在全光照情况 下测量叶绿素荧光信号,而不被其它光 所干扰。

最大荧光
qNP =(Fm-Fm’)/(Fm-Fo’) :非光化学猝灭系数
NPQ = (Fm-F’m)/F’m =Fm/Fm’-1 :非光化学猝灭 non-photochemical quenching
ETR = φPSⅡ ×absorbed PFD ×0.5 :PSII电子
传递 速率
Relationship between PSII and CO2 in maize leaves grown in the field at different dates.
荧光参数是研究植物光化学效率、 光抑制与光破坏防御的有效的工具
该技术被广泛的使用在植物生态、植物抗 逆性、筛选高光效或抗逆品种、转基因植物 的功能分析、光抑制和光破坏的防御机制等 方面的研究。
光抑制概念:
强光造成光合功能下降的过程称为光抑制 特征:光合效率下降;Fv/Fm 及AQY 下降
荧光波动
荧光稳态
荧光快速上升过程
当对暗适应叶片照光时,叶绿素荧光迅速上升,随后 有一系列的慢的波动,逐渐下降到稳态。这称为 “Kautsky Effect”,是Kautsky等在1931年首先报道的。 荧光产量的变化反映了光化学效率和热耗散能力的变化。
将时间标尺放大后的荧光动力学曲线
暗 反 应
光活化过程
对(Kautsky Effect)的解释 :连续光下荧光产量瞬态上升,这是 因为照光后某些碳同化酶需要光活化,因此碳同化途径产生延迟。这 使得照光初期相当多的QA处于还原状态,从而导致了荧光产量的瞬态 上升。这之后,由于光化学过程和热耗散过程的发生,荧光产量产生 淬灭到一个稳态数值(Ft)。
Pheo
Q
PQ
Cytf
H2O Z P680
PC 光量子
X
P700
Fd NADP O2
光量子
光合电子传递链
Fv/Fm =(Fm-Fo)/Fm ; qP=(F’m-Ft )/(F’m-F’o) ; ΦPSII =(F’m-Ft )/F’m ; NPQ =(Fm-F’m)/F’m ;qNP= (Fm-Fm’)/(Fm-Fo’)
由于以上原因 叶绿素荧光动力学技术在: ●光合作用生理生态 ●逆境生理 等研究领域得到了较快的普及和
广泛的应用
直观的叶绿素荧光现象
叶绿素溶液在投射光下呈绿色, 在反射光下呈红色的现象。
荧光现象的本质是什么?为什么 活体植物的叶片看不到荧光现象?
透射光下
反射光下
叶绿体吸收光后,激发了捕光色素蛋白复合体 (LHC),LHC将其能量传递到光系统2或光系统1。其间 所吸收的光能有所损失,大约3%-9%的所吸收的光能被重 新发射出来,其波长较长,也即叶绿素荧光 .
通过调节PSII反应中心的开放的程度干涉荧光的 发射,根据不同情况下荧光的变化来分析光合机 构运行情况。
ΦF =
kf kf + kp+ kd
ФF:叶绿素荧光产量;kf: 叶绿素荧光的速率常数; kp:光化学反应的速率常数;kd:热耗散的速率常数
荧光发射与原初光化学活动、热耗散过程是互相竞 争的一种关系。因此,荧光产量的变化反映了光化学效
相关主题