《机器人原理与应用》实验指导书适用专业:机械设计制造及其自动化王才东编写郑州轻工业学院机电工程学院二一二年九月〇本实验指导书为配合本科高年级《机器人原理及应用》课程教学而编写,适用于机械制造及其自动化专业机器人技术课程实验时使用。
本实验指导书包括两方面的内容:工业机器人部分主要对具有手足融合功能的四足仿生机器人进行介绍,主要包括机械结构、手爪结构、运动学分析、控制系统构成;六自由度机器人运动控制仿真实验要包括认识机器人的结构,通过虚拟机械手的仿真运动理解机器人的运动控制过程。
通过本实验可以使得学生对工业机器人和智能机器人的相关知识有一个全面而系统的了解,是对课堂教学的深化与补充。
四足仿生机器人构型分析及运动学实验 (1)六自由度机器人运动控制仿真实验 (4)···实验一 四足仿生机器人构型分析及运动学实验实验类型:演示 实验学时:2 实验要求:必修一、实验目的通过对四足仿生机器人的机械结构、控制系统、软件编程和离线仿真等部分的介绍,使学生对机器人的结构、坐标系建立、控制方式、轨迹规划、编程与仿真等方面有一个全面而深入的认识,全面深化机器人课程关于机器人构型论述方面的内容。
通过试验使得学生达到:1 了解四足仿生机器人的机械结构;2 掌握四足仿生机器人的控制系统构成和控制过程;3会建立四足机器人的运动学模型。
二、实验内容1 介绍四足仿生机器人的机械结构;2 演示四足仿生机器人的控制系统构成和控制过程;3 演示四足仿生机器人求教再现过程。
三、仪器设备1 四足仿生机器人;2 四足仿生机器人控制系统软件一套;3 装有运动控制卡的工业计算机一台;4 机器人手爪一套。
四、实验原理、方法和手段四足仿生机器人实物图如图1所示。
四足仿生机器人的结构设计中采用模块化方法,使具有手脚融合功能的多足步行机器人不仅具有移动和搬运物体的机能,还能够根据环境和任务的需求进行动态的组合成多种运动结构形式的机器人系统。
该机器人既可完成在地面的行走,又可以利用腿的抓取功能,实现对物体的抓取。
该机器人具有模块化的结构,由机体模块、行走腿结构模块、手脚融合的腿部结构模块、控制模块等组成。
机器人采用基于CAN总线的分布式分层控制系统及基于ARM和DSP的5层分布式控制系统,如图2所示。
基于CAN总线的分布式分层控制系统中,控制系统由上位PC机、USB-CAN 机身接口转接卡和多个关节控制器组成。
其中上位PC机主要完成监控、步态生成、路径规划等上层功能。
机身接口转接卡负责实现上位PC机与下位关节控制器的通信,接收并转发上位PC机的控制指令给下层关节控制器。
底层关节控制器负责控制和驱动关节电机按运动指令运动。
图1 机器人实物图在采用基于ARM和DSP的5层分布式控制系统中,ARM可以运行操作系统和复杂的数据处理程序;DSP能够满足多轴控制对通信速率及实时性的要求;分布式控制使各个轴相互独立,减少了主控制器的负担。
基于ARM和DSP的分布式控制系统具有嵌入式的优点,能够使机器人摆脱体积庞大的复杂上位机的束缚。
图2 四足机器人的运动控制系统五、实验步骤1) 本体结构介绍:结合机器人本体实物和教学内容,由指导教师对机器人的整体结构进行介绍和说明;2) 机器人控制系统介绍;由指导教师介绍控制系统各部分的组成、功用和与本体之间的联接等;3) 机器人示教过程演示。
机器人运动演示。
六、实验报告要求1)根据自己的观察和指导教师的演示,整理出机器人本体的结构特点、控制系统的完整构成等。
2)观察机器人构型,绘制机器人机构简图,建立机器人的D-H坐标系3)建立机器人运动学方程。
实验二 六自由度机器人运动控制仿真实验实验类型:演示 实验学时:2 实验要求:必修 一、实验目的通过对六自由度机器人的机械结构、控制系统、上位机仿真软件等部分的介绍,使学生对机器人的结构、控制系统、轨迹规划、编程与仿真等方面有一个全面而深入的认识,全面深化机器人课程关于机器人控制系统论述方面的内容。
通过试验使得学生达到:1 了解六自由度机器人的机械结构;2 掌握六自由度机器人的控制系统构成和控制过程;3 了解机器人上位机仿真软件的使用方法。
4. 了解机器人不同坐标系的控制过程。
5.了解机器人的点位控制与连续轨迹控制。
二、实验内容1 介绍六自由度机器人的机械结构;2 演示六自由度机器人的控制系统构成和控制过程;3 演示六自由度机器人虚拟样机运动仿真过程。
4.通过仿真软件验证机器人运动学方程的正确性。
5.进行虚拟机器人的点位控制与连续轨迹控制。
三、仪器设备1.六自由度机器人控制系统软件一套;2 装有运动控制卡的计算机一台;四、实验原理、方法和手段机器人机械本体采用六自由度串联关节式结构型式,其结构图如图1所示。
教学机器人的六个关节均为转动关节,第二、三、五关节作俯仰运动,第一、四、六关节作回转运动。
机器人后三个关节轴线相交与一点,为腕关节的原点,前3个关节确定腕关节原点的位置,后3个关节确定末端执行器的姿态。
第6关节预留适配接口,可以安装不同的末端执行器(如手爪)以适应不同的任务要求。
机器人结构参数及D-H坐标系图如图2所示。
机器人的前五个关节采用直流力矩电机和谐波减速器相结合的机械结构,位置反馈元件选用长春三峰传感器技术有限公司生产的增量式旋转编码器,第六关节电机、减速器和增量式编码器选用瑞典的MAXON公司产品。
各关节电机和减速器型号、参数如表2.1所示。
图1 机器人总体构型图2 机器人结构参数及D-H坐标系图六自由度机器人的控制界面主要包括三维仿真界面、数据状态显示、操作界面三大部分。
三维仿真界面可以根据控制过程中要求的不同,实时改变其所占界面比例的大小;数据状态显示主要包括显示当前角度、当前位置姿态、期望角度和运动速度,以此来判断当前机器人的运行状态;对于操作界面而言,尽量将常用和重要的操作控件布局在视图中,而一些自由配置的操作,如轨迹规划操作、路径运动曲线存取操作等,可以通过对话框的方式调用控件。
总体界面布局如图3所示。
图3 机器人仿真界面机器人仿真软件使用方法及部分功能按钮操作如下:(一)常规控件按钮1.“CAN启动”按钮:与下位机建立CAN通讯连接;同时发送一组“0,0,0,0,0,0”角度数据(为了将加速度写入控制芯片中)2.“硬件复位”按钮:运行LM629与SJA1000初始化程序3.“位置复位”按钮:将机械手复位到上电时位置4.“位置查询”按钮:查询机械手样机各关节的当前角度值5.“直线模式”按钮:点击按钮后,会依次更改为“X”,“Y”,“Z”按钮,在响应按钮模式下,通过鼠标移动,即可控制机械手末端沿着指定坐标系进行运动。
如点击一次“直线模式”后,按钮会更改为“X”,此时将鼠标放置在仿真图形中,通过左右移动鼠标,会控制机械手末端沿着X轴方向运动。
(二)连续轨迹控件按钮常规条件下,“X,Y,Z,RX,RY,RZ”按钮为不可操作模式,点击“低速” 按钮后,各按钮为可选状态1.“X,Y,Z”按钮为控制机械手末端沿着“X,Y,Z”坐标系移动,“RX,RY,RZ”按钮为控制机械手末端绕“X,Y,Z”坐标系旋转;2.初始状态下,点击X按钮, X变为X+,控制机械手末端向前运动;选中“逆向”复选框时,X变为X-,控制机械手末端向后运动;“Y,Z”按钮功能相似。
3.初始状态下,点击RX按钮,RX变为RX+,控制机械手末端逆时针转动(由右手坐标系定义); 选中“逆向”复选框时,RX变为RX-,控制机械手末端顺时针运动;“RY,RZ”按钮功能相似。
4.“低速,中速,高速”按钮,可以控制机械手末端运动速度的快慢。
5.“步长编辑框”中输入数值,机械手末端在一次控制命令中运行指定数值,如,编辑框中数值为1,点击X控件,机械手末端沿X轴运行1mm。
6.初始状态下,软件默认为“单步运行”模式,即点击“X,Y,Z,RX,RY,RZ”任意按钮控件后,机械手末端运行编辑框中的指定数值,且只响应一次点击命令;点击“单步运行”控件后,“单步运行”控件更改为“自动运行”控件,编辑框中数值为不可更改模式,点击“X,Y,Z,RX,RY,RZ”按钮任意按钮后,机械手末端运行编辑框中的指定数值,且一直处于运行状态,点击“多关节停止运行”,机械手末端停止运行。
(三)点位运动控制按钮1.正解运算角度编辑框(“角度”下面)输入各关节角度,点击“正解运算”控件,机械手到达编辑框中指定角度。
(编辑框中从左到右依次为1~6关节)2.逆解运算位姿编辑框(“位姿”下面)输入末端关节姿态,点击“逆解运算”控件,机械手到达编辑框中指定位姿。
(编辑框中从左到右依次为1~6关节)3.清零将编辑框中的所有数据恢复默认状态下数据4.OpenGL坐标点击“OpenGL坐标”控件,控件会依次更改为“X,Y,Z”控件,这时可通过鼠标控制三维模型的基座标沿着对应控件坐标系运动。
如,点击一次“OpenGL坐标”,其更改为“X”控件,这时通过左右拖动鼠标可控制三维模型沿着X轴方向运动。
(四)JOG控制按钮“JOG控制按钮”为控制各关节到达指定角度,并且各关节以0.1度运行。
如步长编辑框中为1,点击“+1”控件,第一关节会顺时针运动1度。
(+X,-X代表第X关节正向、逆向运动指定角度)(五)速度控制通过滚动条控制速度的快慢,“JOG速度”与“点位速度”单选按钮为当前控制模式的选定。
如,选中“点位速度”,将“1关节”滚动条拖到最大,这时点击“正解运算”控件,机械手第一关节会以最大速度运行到期望位置。
(六)鼠标控制选中某一关节后,关节颜色会更改为“黄色”,这时通过鼠标移动会控制选中关节运动。
点击三维模型外的任意一点,选中关节会被取消。
(1关节为左右移动鼠标控制,2~6关节为上下移动鼠标控制)(七)状态显示点击菜单栏下的“显示”按钮,会弹出“状态显示”对话框。
状态显示对话框负责实时显示“期望角度”、“位置姿态”与“当前角度”。
八.示教-再现运动点击菜单栏下的“示教”按钮,会弹出“示教-再现运动”对话框。
“示教-再现运动”负责再现机械手的运动轨迹。
“CP示教”负责控制机械手末端沿规划路径运动。
如初始位姿点为“322,0,300,180,-90,0”,点击“CP示教插入点”,当前“点数编辑框”更新为1,控制机械手运动到目标点,如“320,1,300,180,-90,0”, 点击“CP示教插入点”,当前“点数编辑框”更新为2;点击“CP存轨迹”,这时将数据保存保存在“E盘curve文档中”。
再现运动时,点击“读数据”控件,待几秒后,点击“CP示教”控件,这时机械手末端会沿着规划路径运动。
“PTP示教”负责控制机械手各关节到达期望角度。
第三个字节66是代表 点位控制方式;68 连续轨迹控制;75 鼠标拖动控制123关节ID can_data.ID=0x00000010 ,2456关节ID can_data.ID=0x00000000;, 0五、实验步骤1) 本体结构介绍:结合机器人本体实物照片和教学内容,由指导教师对机器人的整体结构进行介绍和说明;2) 机器人控制系统介绍;由指导教师介绍控制系统各部分的组成、功用和与本体之间的联接等;3) 机器人上位机软件介绍。