Verilog课程实验报告实验1十六位超前进位加法器1.1系统设计要求用超前进位加法器实现一个有符号位的16位加法器,并且考虑溢出的情况2.1详细设计根据超前进位加法器的原理Co = G | ( P & Ci ) S = P ^ Ci 设计出4位加法器的子模块,然后通过4个4位加法器的相连来得到十六位的加法器。
原理如下图所示。
溢出用flag=0表示。
3.1程序//-------------16位超前进位加法器-----------------module cla16(a,b,s,flag); //含有a ,b ,输出s ,进位flag 的模块 input [15:0] a,b;//输入a ,b output [16:0] s; //输出 s output reg flag; //进位FA FA FA FAP 0G 1P 0G 1P 2G 2P 3G 3C o,3C o,2C o,1C o,0C i,0FA FA FA FAP 0G 1P 0G 1P 2G 2P 3G 3C o,2C o,1C o,0C i,0C o,3M u l t i p l e x e rBP=P o P 1P 2P 3Idea: If (P0 and P1 and P2 and P3 = 1)then C o3 = C 0, else “kill” or “generate”.wire pp4,pp3,pp2,pp1;wire gg4,gg3,gg2,gg1;wire [15:0] Cp;wire [15:0] p,g;pg i0 (a[15:0],b[15:0],p[15:0],g[15:0]);add i1 (p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],pp1,gg1);add i2 (p[7],p[6],p[5],p[4],g[7],g[6],g[5],g[4],pp2,gg2);add i3 (p[11],p[10],p[9],p[8],g[11],g[10],g[9],g[8],pp3,gg3);add i4 (p[15],p[14],p[13],p[12],g[15],g[14],g[13],g[12],pp4,gg4);add i5 (pp4,pp3,pp2,pp1,gg4,gg3,gg2,gg1,pp5,gg5);//调用四位加法器模块add4 l0 (p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],1'b0,Cp[3],Cp[2],Cp[1],Cp[0]);add4 l1 (p[7],p[6],p[5],p[4],g[7],g[6],g[5],g[4],Cp[3],Cp[7],Cp[6],Cp[5],Cp[4]);add4 l2 (p[11],p[10],p[9],p[8],g[11],g[10],g[9],g[8],Cp[7],Cp[11],Cp[10],Cp[9],Cp[8]);add4 l3 (p[15],p[14],p[13],p[12],g[15],g[14],g[13],g[12],Cp[11],Cp[15],Cp[14],Cp[13],Cp[12]); assign s[0]=p[0]^1'b0; //保留位assign s[1]=p[1]^Cp[0];assign s[2]=p[2]^Cp[1];assign s[3]=p[3]^Cp[2];assign s[4]=p[4]^Cp[3];assign s[5]=p[5]^Cp[4];assign s[6]=p[6]^Cp[5];assign s[7]=p[7]^Cp[6];assign s[8]=p[8]^Cp[7];assign s[9]=p[9]^Cp[8];assign s[10]=p[10]^Cp[9];assign s[11]=p[11]^Cp[10];assign s[12]=p[12]^Cp[11];assign s[13]=p[13]^Cp[12];assign s[14]=p[14]^Cp[13];assign s[15]=p[15]^Cp[14];assign s[16]=pp5|gg5;//溢出判断模块always@(a,b,s)beginif ((a[15]==1&&b[15]==1&&s[15]==0)||(a[15]==0&&b[15]==0&&s[15]==1))flag=1'b1;elseflag=1'b0;endendmodule//4位加法器模块module add4(p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],Co,Cp[3],Cp[2],Cp[1],Cp[0]);input [3:0]p,g;output [3:0] Cp;assign Cp[0]=g[0]|p[0]&Co;assign Cp[1]=g[1]|p[1]&Cp[0];assign Cp[2]=g[2]|p[2]&Cp[1];assign Cp[3]=g[3]|p[3]&Cp[2];endmodule//模块间的进位module add(p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],pp,gg); input [3:0]p,g;output pp,gg;assign pp=p[3]&p[2]&p[1]&p[0];assign gg=g[3]|(p[3]&(g[2]|p[2]&(g[1]|p[1]&g[0]))); endmodule//进位信号的产生module pg(a,b,p,g);input [15:0] a,b;output [15:0] p,g;assign p=a^b;assign g=a&b;endmodule4.1测试程序通过产生一个随机输入a和b,来验证c=a+b。
//16位加法器的测试文件`timescale 1ns/1ns`include"./sixteenadder.v"module sixteenaddertest;wire [15:0] s;reg [15:0]a,b;wire flag;parameter times=5;//随机产生一个数,总共产生6次initialbegina={$random}%65536;b={$random}%65536;repeat(times)begin#100a={$random}%65536;b={$random}%65536;#100 $stop;endcla16 cal161(a,b,s,flag);endmodule5.1仿真波形用mudelsim10.0仿真得到的波形如下所示:如图a=13604,b=24193 s=-27739.s为负数,产生溢出,溢出标位sto=1.当a=-10743,,b=22115.s=11372没有溢出,sto=0.通过这个实验验证了s=a+b,实现了带符号位的加法器。
实验二十六位加减法器1.1系统设计要求将加法器和减法器结合到一起,实现带符号位的16位加减法运算,并考虑溢出。
2.1详细设计在16位加法器的基础上,加上一条判断语句,如果出现减的操作,被减数取反加一,这样就实现了减的运算,用add_sub来表示加减运算符,当add_sub=0时候实现的是减运算,add_sub=1的时候实现的是加运算。
3.1程序//--------------------16位加减法器------------------------module cla16(a,b,s); //定义模块包括a,b,sinput [15:0] a,b;//输入a,boutput [16:0] s; //输出swire pp4,pp3,pp2,pp1;wire gg4,gg3,gg2,gg1;wire [15:0] Cp;wire [15:0] p,g;pg i0 (a[15:0],b[15:0],p[15:0],g[15:0]);add i1 (p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],pp1,gg1);add i2 (p[7],p[6],p[5],p[4],g[7],g[6],g[5],g[4],pp2,gg2);add i3 (p[11],p[10],p[9],p[8],g[11],g[10],g[9],g[8],pp3,gg3);add i4 (p[15],p[14],p[13],p[12],g[15],g[14],g[13],g[12],pp4,gg4);add i5 (pp4,pp3,pp2,pp1,gg4,gg3,gg2,gg1,pp5,gg5);add4 l0 (p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],1'b0,Cp[3],Cp[2],Cp[1],Cp[0]);add4 l1 (p[7],p[6],p[5],p[4],g[7],g[6],g[5],g[4],Cp[3],Cp[7],Cp[6],Cp[5],Cp[4]);add4 l2 (p[11],p[10],p[9],p[8],g[11],g[10],g[9],g[8],Cp[7],Cp[11],Cp[10],Cp[9],Cp[8]);add4 l3 (p[15],p[14],p[13],p[12],g[15],g[14],g[13],g[12],Cp[11],Cp[15],Cp[14],Cp[13],Cp[12]); assign s[0]=p[0]^1'b0;assign s[1]=p[1]^Cp[0];assign s[2]=p[2]^Cp[1];assign s[3]=p[3]^Cp[2];assign s[4]=p[4]^Cp[3];assign s[5]=p[5]^Cp[4];assign s[6]=p[6]^Cp[5];assign s[7]=p[7]^Cp[6];assign s[8]=p[8]^Cp[7];assign s[9]=p[9]^Cp[8];assign s[10]=p[10]^Cp[9];assign s[11]=p[11]^Cp[10];assign s[12]=p[12]^Cp[11];assign s[13]=p[13]^Cp[12];assign s[14]=p[14]^Cp[13];assign s[15]=p[15]^Cp[14];assign s[16]=pp5|gg5;endmodulemodule add4(p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],Co,Cp[3],Cp[2],Cp[1],Cp[0]); input [3:0]p,g;input Co;output [3:0] Cp;assign Cp[0]=g[0]|p[0]&Co;assign Cp[1]=g[1]|p[1]&Cp[0];assign Cp[2]=g[2]|p[2]&Cp[1];assign Cp[3]=g[3]|p[3]&Cp[2];endmodulemodule add(p[3],p[2],p[1],p[0],g[3],g[2],g[1],g[0],pp,gg);input [3:0]p,g;output pp,gg;assign pp=p[3]&p[2]&p[1]&p[0];assign gg=g[3]|(p[3]&(g[2]|p[2]&(g[1]|p[1]&g[0])));endmodulemodule pg(a,b,p,g);input [15:0] a,b;output [15:0] p,g;assign p=a^b;assign g=a&b;endmodule//定义加减法器的模块module addsub(a,b,s,flag,add_sub);input[15:0]a,b;input add_sub;output [15:0] s;output reg flag;wire [15:0]b1;cla16 cla1(a,b1,s);/* always@(posedge clk)beginif(~add_sub)beginb1=~b;b1=b1+1;else b1=b;end*/assign b1= (add_sub)? b:(~b+1'b1);//判断是否为减操作,为减操作的话是取反加一的运算always@(a,b,s) //判断是否溢出beginif((a[15]==1&&b[15]==1&&add_sub==1&&s[15]==0)||(a[15]==0&&b[15]==0&&add_sub==1&&s[1 5]==1))flag=1'b1;elseflag=1'b0;endendmodule4.1测试程序`timescale 1ns/1ns`include"./adder_sub.v"module adder_sub_test;wire [15:0] s;reg [15:0]a,b;reg add_sub;wire flag;initial //初始化,输入测试的数据begina=-16'h7851;b=16'ha432;add_sub=1;#100begina=-16'h1233;b=16'h3211;add_sub=0;end#100begina=16'h0232;b=16'ha161;add_sub=1;#100begina=16'h5632;b=16'h04a1;add_sub=0;end#100begina=-16'h1234;b=16'h4525;add_sub=0;end#1000 $stop;endaddsub addsub1(a,b,s,flag,add_sub);endmodule5.1仿真结果用modelsim10.0仿真,得到的结果如下所示:当a=-30801 b=-23502,add-sub=1,加操作,s溢出,产生溢出信号flag=1.当a=-4659 b=12817 add_sub=0,减操作,输出s=-17476,无溢出,flag=0.当a=562 b=-24223 add_sub=1,加操作,输出s=-23661,无溢出,flag=0.通过以上的结果分析,此程序实现了带符号位的加减法的功能。