三高压套管的介质损耗测试(一)试验目的高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。
但当绝缘中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能变差,这是造成绝缘破坏的重要原因。
受潮的纸纤维中的水分,可能来自绝缘油,也可能来自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。
液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清洁状态下的0.05%左右上升到0.5%以上。
除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发现电容型设备的绝缘的损坏。
如一个或几个电容屏发生击穿短路,电容量会明显增加。
由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。
(二)试验接线及试验设备1、介质损耗因数的定义绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。
图3-1绝缘介质在交流电压作用下的等值回路及相量图众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流过介质的电流由两部分组成,I CX为电容性电流的无功分量,I RX为电阻性电流的有功分量,介质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关,为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此比值即为介质损耗因数。
Q=U·I CXP=U·I RX则QP=CXRXII=tgδ(3-1)从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tgδ。
2 几种典型介损测试仪的原理接线图国外从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。
下面分别作简要的介绍:(1)西林电桥的原理图3-2所示图3-2西林电桥的原理图图中当电桥平衡时,G显示为零,此时3RZx=4ZZx根据实部虚部各相等可得:tgδ=ωR4C4C≈RRCn34(当tgδ<<1时)根据R3、C4、R4的值可计算得出tgδ、C的值。
从原理上讲,西林电桥测介质损耗没有误差,但由于分布电容是无所不在的,尤其是Cn必须有良好的屏蔽,当反接法时,必须屏蔽掉B点对地的分布电容,正接法时,必须屏蔽掉C点与B点间的分布电容,但由于屏蔽层的采用增加了C4、R4及R3两端的分布电容带来了新的误差,以R3正接法为例,R3最图3-3大值为1k Ω左右,当分布电容达10000PF 时,对介损的影响为0.3%,为了消除这一分布电容的影响,提高测试精度,试验室采用双屏蔽,如原理图3-3所示。
Us 电位自动跟踪S 点电位,这样R3对地的分布电容电流为零,从原理上消除了杂散电容的影响,但采用这种方式不能用于反接法,因为S 点电位是高压,在现场不可能使用。
目前国内外典型的西林电桥有QS1(现场用)、QS37(试验室用)、瑞士2801(试验室用)。
(2)电流比较型电桥电流比较型电桥的原理图如图3-4所示。
图3-4图中T 为环形互感器,通过调节k1、k2、k3使电桥达到平衡,即G 的指示为零,根据磁路定律:•φ1+•φ2+•φ3=0根据实部虚部相等有:Cx=21K K C N tg δ=13k k 这种电桥因各线圈的等值阻抗较小,对地的分布电容影响很小,测试较为准确,由于T是一互感器,谐波及电晕电流的影响很大,在现场使用与试验室差别较大。
这种电桥国内有QS30等。
(3)M 型电桥M 型电桥的原理图如图3-5所示。
图3-5这种电桥是利用标准臂产生的电容电流与试品的电容电流相抵消,余下的即为阻性分量,从而计算出介损值,具体分析如下:•U A =•I N ·R 4·k (k ≤1,其数值与可调电阻动触头的位置有关)•U B =(•IRX +•I CX )R 3 •W =•u A -•u B =•I N ·R 4·k-•IRX ·R 3-•I CX ·R 3 =(•I N ·R 4·k-•ICX ·R 3)-•I RX ·R 3 由于•I N 与•I CX 均超前于•u 900,为同相分量。
当I N ·R 4·k=Icx ·R 3 3-2W 有最小值,此时W=I RX ·R 3 3-3通过式(3-2)可得Icx=34R k R I N 3-4 其中,k 与R 4动触头的位置有关,当W 调至最小值时,可以通过特有回路测得K ,这样可测得Icx 值,同时可得到电容量的值。
通过)式(3-3获得I RX =3R W (3-5)那么,tg δ=CXRX I I 可以算出tg δ值。
由于R 3、R 4阻值较小,最大值为100Ω,杂散分布电容的影响仅为西林电桥的1/10,且R 3、R 4的值较为固定,分布电容可以补偿,可以进一步提高精度。
当设备为一端接地时,M 型电桥采用反接法,即在B 点接地,此时如不采取措施,高压变压器及高压电缆对地电容就并联在试品两端,影响了测量精度,为此M 型电桥的高压电缆及高压变压器均采用双重屏蔽,如图3-5中。
Ce 为高压变压器的耦合电容,直接并联在高压线圈两端,对测量没有影响。
(三) 电容型套管的介损试验方法电容型套管的最外层有末屏引出,试验时可采用电桥正接法进行一次导杆对末屏的介损及电容量测量。
对于电容型套管末屏的介损测试,可采用电桥反接法测量末屏对地的介损和电容量,试验电压加在末屏与套管油箱底箱之间,并将依次导杆接到电桥的“E ”端屏蔽,试验时所加的电压须根据末屏绝缘水平和电桥的测量灵敏度而定。
一般可取2~3kV 。
1 电场干扰对介损测试结果的影响现场的干扰主要是电场及磁场干扰,电场干扰主要是外界带电部分通过电桥臂耦合产生电流流入测量臂;另一种干扰是磁场干扰,其主要是对桥体本身的感应,随着电磁屏蔽技术的发展,这一干扰可以利用桥体的磁屏蔽层消除。
下面主要讲述电场的影响电场对测量的影响,对各种电桥来讲,原理上是相同的,现以M 型电桥为例作简要的介绍,对220kV 套管来说,图3-6为干扰对M 型电桥影响的原理图。
图3-6正接法时,当高压变压器初级合闸后,高压变压器次级相对于3200kV的电源来讲处于短路状态(叠加法),可以认为流过Cn 及试品臂的电流为零,也就可以认为干扰电流Ig 对测试没有影响。
当然由于干扰除对试品的顶部有影响,对试品中部亦有耦合,有较小的干扰,所以正接法时,现场干扰很小。
反接法时,高压变压器合上后,高压变压器次级相当于短路,试品或Cn 阻抗很大,Ig 主要通过变压器次级及R 3到地,那么Ig 对测量的影响很大,所以反接法时,测试受外界电场干扰很大。
2 介质损耗测量时电场干扰的抑制现场进行介质损耗测量时抑制干扰的方法很多,常用有的屏蔽法、移相法、倒相法。
这三种方法,许多文献上有过专门介绍,总的来说各有利弊。
屏蔽法可以抑制外界电场对试验的干扰,缺点是比较麻烦,而且在一定程度上改变了被试品内部的电场分布,因此测量结果与实际值有一定的差异;移相法测量介质损耗,测量值比较准确但需要有专门的移相设备,同时测量也比较复杂;倒相法无需专门设备,操作方便,但当电场干扰较大时,倒相后介质损耗测量值有可能出现负值。
移相法与倒相法,都是在外界电场干扰电流•'I 与被试品电流•I x 幅值不变的情况下,靠改变•I x 的相位,经过简单的数学计算来比较准确地反映被试品的真实介质损耗。
另一类抑制电场干扰的方法是提高介质损耗测量时的信噪比。
由于•'I 可以认为是恒流源,而•I x 的幅值随试验电压的增加而增加,故提高试验电压可以提高信噪比k=••'I Ix,从而起到抑制干扰电流、提高测量精度的作用。
但此种方法受到无损标准电容器耐受电压的限制,现场往往难以实施。
(1) 屏蔽法在设备上方放置一屏蔽罩,屏蔽罩接地,干扰则直接到地,不影响电桥的桥臂,但这一方案实际使用很麻烦。
(2)采用移相电源电桥电源采用移相电源,由于干扰电流•I g 的相位不变,所以调节电源的相位,•I x 相位便相应的变化,当•I x 与•I g 的相位一致时,δ角测试受外界的影响很小。
但这种方法设备较重,较复杂,操作亦十分麻烦,现场使用很不方便。
(3)采用倒相法这是一种比较简单的方法,测量时将电源正、反倒相各测一次。
由于干扰电源Ig 的相位不变,分析时可认为电桥电源相位不变,即•I x 的相位不变,而•I g 作1800的反相,如图3-7所示。
tg δ1=CX RX I I '' tg δ2=CXR I I ''''tg δ=CX RX I I =)"'(2/1"'(2/1)CX CX RX RX I I I I ++=CX CX CX CXt I I tg I g I "'"'21++δδ="'"'212111C C tg C tg C ++δδ由图中可知:Cx=2"'x C x C + 这种方法从原理上可以完全消除干扰,但在干扰很大时,tg δ1、tg δ2可能很大且一正、一负,但tg δ却很小,这样tg δ1、tg δ2的测量误差相对tg δ来讲已很大,对tg δ测量的误差则很大。
(4)50%加压法这是一种无需另加试验设备、操作简便,只需作简单计算就可以比较准确地反映被试品真实介质损耗的方法。
所谓50%加压法,就是在政党介质损耗测试回路不变的情况下,将试验电压升到额定试验电压,调节电桥平衡,测得第一组R3与tg δ的值,即R 31与tg δ1, 然后将试验电压退到50%的额定试验电压,重新调节电桥平衡,测得另一组R3与tg δ的值R 32与tg δ2,进行简单计算,求取被试品真实介质损耗的方法。
现以图3-8为例分析如下:根据电桥平衡原理,可得有干扰电压时的电桥平衡方程为:34R Z Z N -Zx 1=••UZeU '式中:Z 4=(41R +j 4C ω)-1Z N =NC j ω1图3-8Zx=Rx+Cx j ω1 •'U ——干扰电压•U ——外加试验电压Ze ——干扰电压等值耦合阻抗设外施额定试验电压时调节电桥平衡,测得R 31、tg δ1,则电桥平衡方程为: 3141R Z Z N -Zx 1=••UZeU ' (3-6) 式中:Z 41=(41R +j 41C ω)-1式中:Z41=(41R +j 41C ω)-1 然后将试验电压降到50%的额定电压,重新调节电桥平衡,测得R 32、tg δ2,则电桥的平衡方程为:3242R Z Z N -Zx 1=••UZe U 21' (3-7) 式中:Z 42=(41R +j 42C ω)-1 求解式(3-6)、(3-7)得被试品的真实介质损耗为:tg δ=323132312122R R R R tg tg --δδ (3-8)Cx=R 4C N ()123231R R (3-9) 3 套管的高电压介损试验高电压介损试验指试验电压高于一般试验电压(通常为10 kV ),必须采用电桥正接法,同时必须将套管的下端置于具有足够电气强度的容器中,高压介损测试的原理接线方式与10 kV 电压介损的正接法相同,进行高电压介损测量时必须解决以下几个关键技术问题:1) 确定电源容量;2) 选择防电晕高压引线;高压引线对高压介损测试结果的影响:高压介损测试时对被试品所施加的电压较高,如采用一般的细导线作为高压引线,则导线上就会有较重的电晕产生,电晕损耗通过杂散电容将被计入被试品的损耗值中,从而影响被试品高压介损随电压变化的曲线。