辐射防护实验报告
4 、分别测量不同材料对不同能力中子的防护水平;
四、实验设备
1、PC 及相关辅助软件。
五、实验步骤
1、打开软件,对软件进行正确的设定。
2、做γ剂量实验,测定γ射线在不同的距离下的剂量,列表记录结果。
3、做γ屏蔽实验,用实验室窄束γ射线,测量在不同厚度物质的条件下,射线通过不同物质的剂量,列表记录结果。
4、做β屏蔽实验,测量在不同厚度屏蔽物质的条件下,射线通过不同物质的剂量,列表记录结果。
5、做中子屏蔽实验,用快中子测量在不同厚度屏蔽物质的条件下,射线通过不同屏蔽物质的剂量,列表记录结果。
6、关闭软件,写实验报告。
六、实验结果
1.γ计量实验实验数据如下:
20
30
40
50
60
70
80
90
100
实验图像为:
9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值);
10、数据处理。
数据处理如下:
1)本底剂量率为:
2)在距离放射源、1、2米处不同时间计数率为:
距离m
时间
30s
60s
90s
/
/
/
/
/
/
平均值
/
/
1
43
平均值
/
/
2
/
/
/
/
平均值
/
/
3)从核工楼到博物馆伽马剂量率坡面如下:
3、暂时屏蔽放射源,并添加混凝土屏蔽材料,开启放射源,得到当前仪器的计数率N1(连测3次以上,取平均值),如下图4所示;
图2、不放置放射源,测量本底Nd示意图
图3、未加屏蔽材料,测量N0示意图
图4、添加混凝土屏蔽材料,测量N1示意图
4、利用上述测定的计数Nd、N0、N1计算实验测定值,即减弱倍数 ;
1-1γ计量Gy/cm
2.γ屏蔽实验实验数据如下:
材料
粒子数
Fe
300000
厚度
2
4
6
8
10
12
计量
Pb
厚度
1
2
3
计量
14
16
4
5
实验图像为:
1-2Fe屏蔽γ射线(Gy/cm)
1-3Pbγ射线屏蔽
3.β射线屏蔽实验数据如下:
厚度(cm)
剂量
ห้องสมุดไป่ตู้厚度(cm)
剂量
AL铝
锡
实验图像为:
1-4β射线屏蔽-Al
1-5β射线屏蔽-锡
3、以上述给出的K或η的测量值为准,测量得到铁板、铅板达到上述减弱倍数值时所需的厚度,如果没有正好合适厚度的材料,则利用由偏厚和偏薄的对应材料测量得到的减弱倍数值进行线性插值计算得到对应材料厚度;
4、宽束时测量得到铁板达到上述减弱倍数值时所需的厚度,并分析比较。
四、实验设备
1、Ra-226源一个;
2、混凝土、铅、铁板若干;
答:不同测量时间测得的剂量率基本相等。
4、根据γ照射剂量率剖面,分析测量值高低情况,并统计平均值作为环境本底,计算在此环境下的年有效剂量。
答:如图在1-1中在测量过程中得到的剂量率剖面基本维持在一个稳定的值附近,其波动较大的点引起的原因是粒子的统计涨落,没有特殊意义。得到平均剂量率为:
年有效剂量为:*365*8*10-8Gy/h=*10-4Gy
7.在宽束情况下用进行上述实验,求出实现上述的减弱倍数K0需要铁的等效厚度dFe‘。
六、思考与计算
1、理论计算出铅、铁等效屏蔽厚度d’Pb、d’Fe,并与实验测定值dPb、dFe进行比较,以表格的形式列出对应结果,给出分析结论。
答:
理论求的的厚度要比实际所用的厚度大一些,因为在实际反应过程中,还有发生射线的散射以及和介质发生反应等现象。
4.快中子屏蔽实验实验数据如下:
厚度(cm)
剂量
厚度(cm)
剂量
厚度(cm)
剂量
pb铅
Fe
Cu
5
5
5
10
10
10
15
15
15
20
20
20
25
25
25
30
30
30
35
35
35
40
40
45
45
60
60
50
65
65
55
70
+00
60
65
70
+00
厚度(cm)
剂量
厚度(cm)
剂量
厚度(cm)
剂量
钨(W)
水
硼砂
4、如果上述几组结果差别比较大,分析原因并给出分析结论。
答:我们计算所得的屏蔽材料的厚度是在理想的状态下,而在实际的实验过程中入射射线粒子会与屏蔽材料原子发生相应的反映,以及会产生散射,折射,因而实际在测量过程中的厚度和计算所得厚度是不一样的。
实验三:γ、β、中子射线的辐射屏蔽
一、实验目的
1、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。
5、暂时屏蔽放射源,计算混凝土的厚度d。课后根据经验公式,计算得到理论减弱倍数K1,并与实验值K0相比较;
6、测定要实现上述的减弱倍数K0需要的铅、铁的等效厚度dPb、dFe,基本过程是:放入足够厚的材料,使得读数小于N1,然后逐步撤出部分材料,使得仪器读数逐渐增大到N1,此时的材料厚度就是等效厚度。如果没有正好合适厚度的材料,则利用偏薄和偏厚的测定值进行线性插值计算得到。
三、实验内容
1、测量实验室γ照射本底环境;
2、测量一条环境γ照射剂量率剖面;
3、测量岩石的γ照射剂量率;
4、加放射源,测量并计算不同测量时间情况下的剂量;
5、加放射源,测量不同距离情况下的剂量率。
四、实验设备
1、Ra-226源一个;
2、X-γ剂量率仪一台;
3、岩石标本。
五、实验步骤
布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!!
2、通过表格列出不同物质对β,γ,中子的屏蔽效果。
答:
对于快中子屏蔽物质都为20cm厚时各物质屏蔽效果
实验步骤如下:
1、调节准直器以及探测仪器的相对位置;
2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd(连测3次,取平均值);
3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值);
4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值);
3、X-γ辐射仪一台;
五、实验步骤
布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!!
实验步骤如下:
1、调节准直器以及探测仪器的相对位置,如下图2所示,调节到仪器的cps档,记录仪器的本底计数率Nd(连测3次以上,取平均值);
2、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,如下图3所示,测定并记录未加屏蔽材料时仪器的计数率N0(连测3次以上,取平均值);
2、通过分析实验测定值与理论计算值之间的关系和差别,获得直观的认识,加强理论与实际的联系;
二、实验原理
利用宽束X或γ射线的减弱规律,考虑康普顿散射效应造成的散射光子不是被完全吸收而仅仅是能量和传播方向发生改变,从而会继续传播而有可能穿出物质层。
图1、窄束、宽束示意图
在辐射防护中遇到的辐射一般为宽束辐射,射线束较宽、准直性差,穿过的物质层也很厚,如上图1所示,在此情况下,受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。
图1-1
4)博物馆前岩石计量率如下:
砂岩
白云岩
花岗岩
钒钛磁铁矿
六、思考与计算
1、根据测得的实验室γ照射本底环境Nd,计算在此环境下的年有效剂量。
答:在实验室本底环境下年有效剂量为:
E=Nd*365*8=*365*8*10-8Gy/h=*10-4Gy
2、根据布置放射源情况下,不同距离测得的剂量率N0、N1、N2,计算在此条件下,每天工作八小时的年有效剂量,并进行比较。
利用宽束X或γ射线的减弱规律,考虑康普顿散射效应造成的散射光子不是被完全吸收而仅仅是能量和传播方向发生改变,从而会继续传播而有可能穿出物质层。
图1、窄束、宽束示意图
在辐射防护中遇到的辐射一般为宽束辐射,射线束较宽、准直性差,穿过的物质层也很厚,如上图1所示,在此情况下,受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。
《辐射防护实验报告》
专业:xxx姓名:xxx学号:2010xxxx
实验一:γ射线的辐射防护
一、实验目的
1、掌握X-γ剂量率仪的使用方法;
2、了解环境中的γ照射水平;
3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。
二、实验原理
闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。
2 了解不同材料对给定能量和强度的γ射线和中子的屏蔽防护能力,以及了解不同材料对β射线的屏蔽能力;