当前位置:文档之家› 酶工程ppt

酶工程ppt


酶工程
第二章 酶的发酵工程
(四)酶生物合成的阻遏作用
1. 终产物阻遏 某一代谢(合成)途径的终产物阻遏合成途径中酶
的合成的现象。
A E1 B E2 C E3 D E4 E
酶工程
第二章 酶的发酵工程
2. 分解代谢物的阻遏作用 当培养基中存在两种碳源(底物)时,容易利用的碳
源的分解代谢产物阻遏分解代谢另一种碳源的酶的合成 的现象。
酶工程
第二章 酶的发酵工程
(三)增强子促进酶的生物合成
增强子:是一段能够提高转录效率的特定DNA序列,长 约100~200bp,核心组件8~12bp,单拷贝或多拷贝串联存在。
增强子的作用特点:
(1)提高同一条DNA链上基因的转录效率,可远距离发 挥作用,在基因的上游或下游均可起作用。
(2)与其序列的正反方向无关。 (3)要有启动子才能发挥作用,但对启动子没有严格的 专一性。 (4)必须与特定的蛋白质因子结合才能发挥作用,具有 组织和细胞特异性。
葡萄糖效应:葡萄糖抑制微生物利用其他碳源(底物) 的现象 。
cAMP-CAP
I
P
OZ Y A
酶工程
第二章 酶的发酵工程
二、真核生物中酶生物合成的调节
(一)细胞分化改变酶的生物合成
如:端粒酶的生物合成
(二)基因扩增加速酶的生物合成
如:爪蟾卵细胞形成时,rRNA的基因数增加4000倍; 中国田鼠细胞培养在含有氨甲基蝶呤的培养基中生长时, 细胞中编码二氢叶酸还原酶的基因大量扩增,以合成大量 的二氢叶酸还原酶。
酶工程
第二章 酶的发酵工程
6. 菌种的退化与复壮 (1)菌种退化现象:随着菌种保藏时间的延长或多次的
转接传代,菌种本身所具有的优良遗传性状发生了不利于 发酵生产的遗传变异现象。
(2)防止退化措施:创造合适的培养条件,采取有效的 菌种保藏方法,尽量减少传代次数。
(3)退化菌种的复壮:纯种分离和性能测定。包括已发 生退化菌种的复壮和菌种退化之前的复壮和提高。
醚,泡敌(聚环氧丙烷环氧乙烷甘油)。勤加、少加较好
酶工程
第二章 酶的发酵工程
5. 湿度对产酶的影响与控制
对固体发酵产酶而言,影响微生物的产酶量,也会影响 产酶达到高峰的时间。
特定菌种,发酵过程的不同时期,对湿度要求不同。固 态发酵产酶,前期湿度低,后期湿度高,有利于产酶。
调节控制
配制培养基时,控制物料的含水量;控制鼓风量大小,或 调节空气的湿度;喷洒水分
培养基 营养成分丰富,尽可能满足细胞生长繁殖; 营养成分尽可能与发酵培养基接近;pH值稳定
培养条件 必须是菌种细胞生长繁殖的最适条件;包括 温度、pH值、通气搅拌、通风、翻曲、湿度
种龄 生命力最为旺盛的对数生长期。细菌:7~24h; 霉菌:16 ~ 50h; 放线菌:21~64h;
酶工程
第二章 酶的发酵工程
劳动强度大;原料利用率低;产酶纯度差,提取精制
困难;传质传热效率 低,发酵条件不易控 制,产酶不稳定;不 能进行胞内酶的生产。
酶工程
第二章 酶的发酵工程
(三)分批发酵
特点:操作简单;发酵初期营养物过多可能抑制微 生物的生长,中后期可能因为营养物的减少及有害代谢 产物的积累而降低培养效率
(四)连续发酵
酶工程
第二章 酶的发酵工程
2. 菌种的分离纯化 平板划线法、稀释涂布分离法
3. 产酶性能的测定 初筛: 快速、简便;平板筛选法—有色圈。 复筛: 精确;液体或固体培养发酵,测定产酶水平。
4. 菌种的选育 诱变育种、杂交育种、原生质体融合育种、基因工程育种
5. 菌种的保藏 斜面低温保藏法、沙土管保藏法、石蜡油封藏法、真空冷 冻干燥法、超低温保藏法、固体曲法等。
醇、EDTA等
酶工程
第二章 酶的发酵工程
(二)培养条件对产酶的影响与调节控制
1. pH对产酶的影响与调节控制 细菌、放线菌:中性至微碱性;霉菌、酵母菌:微酸性 培养基pH的改变会影响产酶的种类或比例 调节控制 控制培养基的组分或比例;添加pH缓冲物种;流 加酸碱溶液或补料;提高空气流量
酶工程
第二章 酶的发酵工程
酶工程
第二章 酶的发酵工程
3. 溶解氧对产酶的影响与调节控制
临界氧浓度——不影响细胞正常代谢的最低氧浓度 溶氧浓度是由溶氧速率和耗氧速率来决定的。
调节控制
① 调节氧分压 改变进气压力或罐压,改变氧含量,
② 增加通气量
添加氧载体
③ 延长气液接触时间,增加气液接触面积
④ 改变培养液的性质 改变组分或浓度,添加消泡剂
酶工程
第二章 酶的发酵工程
一、酶的生产菌种
(一)产酶微生物的种类 1. 细菌:大肠杆菌—青霉素酰化酶、L-天冬酰胺酶;
枯草芽孢杆菌—中性蛋白酶、中温α-淀粉酶; 地衣芽孢杆菌—高温α-淀粉
2. 放线菌:葡萄糖异构酶、谷氨酰胺转氨酶
3. 酵母菌:凝血激酶、尿激酶、植酸酶
4. 霉菌:黑曲霉、米曲霉—α-淀粉酶、糖化酶、乳糖酶、
酶工程
第二章 酶的发酵工程
第一节 酶生物合成的调节机制 第二节 酶的发酵技术 第三节 酶发酵动力学
酶工程
第二章 酶的发酵工程
第一节 酶生物合成的调节机制
一、原核生物中酶生物合成的调节
原核生物酶的合成主要是在转录水平上进行调节,调 节方式主要有酶合成的诱导和酶合成的阻遏两种方式。
原核生物中酶合成的诱导和阻遏作用机制都可以用 Jacob和Monod提出的操纵子理论来解释。
酶工程
第二章 酶的发酵工程
三、酶生物合成调节作用机理的实际应用
(一)发酵中的应用
(二)酶生产中的应用
(三)微生物菌种选育中的应用
酶工程
第二章 酶的发酵工程
第二节 酶的发酵技术
利用微生物的发酵作用,运用一些技术手段控 制发酵过程,大规模产酶的技术,称为酶的发酵技 术。内容主要包括:菌种的选育、培养基的配置、 培养条件控制、发酵方法。
酶工程
第二章 酶的发酵工程
2. 乳糖操纵子的诱导机制
(1)乳糖(操2)纵阻子遏的蛋结白构的(负3性)调CA节P;的正性调节
cAMP-CAP β-半乳糖苷酶 透过酶 乙酰基转移酶
DNA
I
P
OZ Y A
RNA聚合酶
mRNA
诱导物
阻遏蛋白
酶工程
第二章 酶的发酵工程
(二)色氨酸操纵子学说
分支酸 邻氨基苯甲酸 磷酸核糖邻氨基苯甲酸 羧苯氨基脱氧核糖磷酸 吲哚甘油磷酸
2. 温度对产酶的影响与调节控制 不同的微生物生长与产酶的最适温度各不不同;
很多微生物发酵产酶的最适温度与生长繁殖的最适温 度不同,且往往低于生长最适温度。
在酶发酵生产的不同阶段控制不同的温度条件, 进行变温发酵。
调节控制
液态发酵可利用发酵罐的夹套、盘管或蛇管等通过 温(冷)水进行调节控制,固态发酵可通过通风量或风 温来进行调节。
酶工程
第二章 酶的发酵工程
(四)菌种活化与扩大培养
1. 菌种扩大培养
保藏菌种 试管斜面活化 三角瓶培养 种子罐培养
2. 种子制备的过程 防止杂菌污染,减少转接次数,避免种子培养基的长时
高温灭菌;培养基及培养条件是细胞生长繁殖的最适条件; 培养时间以对数生长期为宜。
酶工程
第二章 酶的发酵工程
3. 种子质量的控制 (1) 影响种子质量的因素及其控制
酶工程
第二章 酶的发酵工程
第二章 酶的发酵工程
所有的生物为了维持其正常的生命活动,在一定 的条件下都能够合成其自身生长所需要的各种酶,酶 的种类和数量是受到细胞自身的严格调控的。
通过人为的操作控制,利用生物细胞的生命活动 来大规模发酵生产人们所需要的酶的技术过程,称为 酶的发酵生产。
酶的制备方法:提取法、发酵法、合成法。
优点:可有效实现自动化,降低劳动强度,设备利 用率高,可消除反馈阻遏作用,酶产率高。适合于与生 长相偶联的发酵产物的生产。
缺点:菌种易变异退化,易染杂菌。原料利用率低, 生产成本增加。
酶工程
第二章 酶的发酵工程
(五)补料分批发酵
优点:可解除营养基质的抑制和分解代谢物阻遏作 用;可改善好氧发酵的溶氧状况;减少菌体生成量,提高
脂肪酶;理氏木霉—木聚糖酶、纤维素酶; 青霉—葡萄糖氧化酶、5/-磷酸二酯酶
酶工程
第二章 酶的发酵工程
(二)产酶菌种的要求
(1)酶的产量高; (2)容易培养和管理,产酶细胞容易生长繁殖,适应性强,便 于管理; (3)菌株遗传性能稳定,不易变异退化,不易感染噬菌体,保 证生产的稳定性; (4)菌株能利用廉价原料,发酵周期短,生产成本低; (5)有利于酶产品的分离纯化,最好是分泌型的胞外酶; (6)菌株安全可靠,非病原菌,不产毒素及其它有害物质,不 影响生产人员的身体健康; (7)基因工程菌必须符合安全性要求。
色氨酸
邻氨基苯甲酸合酶 邻氨基苯甲酸磷酸核糖转移酶 磷酸核糖邻氨基苯甲酸异构酶 吲哚甘油磷酸合酶 色氨酸合酶
酶工程
第二章 酶的发酵工程
1. 操纵子的调节作用
DNA
R
PO
E D C BA
mRNA
辅阻遏物
(色氨酸)
阻遏蛋白原
酶工程
第二章 酶的发酵工程
2. 衰减子的调节作用
DNA
R
PO
1
前导序列
E D C BA
有用产物的转化率;菌丝 减少可降低发酵液的粘度, 便于发酵培养物的输送及 后处理;不易产生菌种退 化和变异,杂菌污染易控 制;使用范围广。
酶工程
第二章 酶的发酵工程
四、提高产酶的措施
(一)添加诱导物
诱导物类型:作用底物、反应产物、底物类似物
(二)降低阻遏物浓度
分解代谢物阻遏、末端产物(反馈)阻遏
相关主题