无人机建模
4.无人机在各方向运动速率,滚转速度与四个电机速度呈比例;
5.无人机在低速下飞行,忽略空气阻力。
根据刚体运动定律可知:
式中: 为无人机的质心到惯性坐标系原点的距离
m为无人机的总质量;
为旋翼推力;
另外,机体坐滚转角, 为俯仰角, 为偏航角。
假定4个螺旋桨轴都与z轴平行排列,定义推力为4个螺旋桨升力的总和,且在机体坐标系中表示的升力 ,不包含x和y方向的成分,因此地面坐标下四旋翼无人机的推力 可由下式得到:
,i=1,2,3,4
式中: 为升力系数, 为螺旋桨旋转角速度。
2.旋转运动模型
作用在四旋翼无人机上的主要物理作用有:空气动力学效应、惯性力矩和陀螺效应,根据欧拉方程,可得:
1.10
式中J为机体坐标系B中机体的转动惯量,因为四旋翼机具有对称性,所以为对角矩阵, , , 为机体绕三坐标轴的转动惯量; 为机体系内欧拉角速度,它和地面系内姿态角的关系可以由下式得出:
式1.10中 为机体系中无人机所受力矩
式中:d是旋翼轴到旋翼重心距离; 是旋翼的z轴力矩
为阻力系数。
式1.10中 为陀螺效应,由于电机和旋翼的转轴与机体系z轴平行,当无人机俯仰或横滚时,由于陀螺效应会改变旋转物体角动量向量的方向,从而产生力矩。
, 是第i个旋翼的角速度, 是旋翼和电机的转动惯量。但是,由于 的值很小,故可忽略陀螺效应。于是可得简化模型:
综上所述无人机模型的动力学方程可表示为:
, , , 即为系统的控制输入量。
式中: 为z轴方向线运动控制量;
为横滚姿态 和y轴方向线运动控制量;
为俯仰姿态 和x轴方向线运动控制量;
为偏航姿态 控制量。
1.直线运动模型
四旋翼直升机的控制相当于对力和扭矩的平衡。四旋翼所受外力和重力平衡时就可以实现盘旋飞行。
首先建立地面坐标系E(OXYZ)和机体坐标系B(oxyz)如图所示。
对无人机模型做如下假设:
1.无人机看做为刚体,且完全对称;
2.机体坐标系中的原点o与无人机的质心在同一点;
3.无人机的螺旋桨是不可变形的;