PECVD原理和设备结构
PECVD设备结构
真空系统
真空泵:每一根石英管配置一组泵,包括 主泵和辅助泵。
蝶阀:可以根据要求控制阀门的开关的大 小,来调节管内气压的
PECVD设备结构
控制系统
CMI:是 Centrotherm 研发的一个控制系统,其中
界面包括 Jobs(界面) 、System(系统)、
Catalog(目录)、Setup(软件)、Alarms(报警)、 Help(帮助). Jobs:机器的工作状态。 System:四根管子的工作状态,舟的状态以及手动操 作机器臂的内容。 Datalog:机器运行的每一步。
Si3N4的认识: 其Si理3N想4膜的的厚颜度色是随75着—它8的0n厚m度之的间变,化表而面变呈化现, 的2.颜5之色间是为深最蓝佳色。,Si3N4膜的折射率在2.0—
Si3N4的优点: 优良的表面钝化效果高效的光学减反射性能 (厚度折射率匹配)低温工艺(有效降低成本) 反应生成的H离子对硅片表面进行钝化.
a. 淀积速率随衬底温度的增加略有上升,但变化不显著。由于PECVD工艺的反应动力来自 比衬底温度高10~1000倍的“电子温度”,因而衬底温度的变化对膜的生长速率影响不大。 b. 基板温度与膜应力的关系:从低温到高温,应力的变化趋势是从压应力变为张应力。一种 理论解释为:压应力是由于在膜的沉积过程中,到达膜表面的离子的横向移动的速率太小, 来不及到达其“正常”的晶格位置,被后来的离子覆盖,这样离子就相当于被阻塞在某一位 置,最终就会膨胀,形成压应力。张应力的形成是由于在膜的形成过程中,由于反应中间产 物的气化脱附,而参加淀积的原子,由于其迁移率不够大而来不及填充中间产物留下的空位, 最后形成的膜就会收缩,产生张应力。 针对这种理论,膜在生长过程中,到达膜表面的离子的横向移动速率正比于样品表面的温度, 样品的温度低,膜表面的离子的移动速率就相应趋小,而离子到达样品的速度主要决定于离 子的密度,决定于功率的大小,跟温度基本无关,这样,一方面外部离子不断地大量涌到样 品表面,另一方面,由于温度低,离子的横向迁移率小,离子来不及横向移到其“正常”的 晶格位置就被后来的离子覆盖,必然造成阻塞,成膜厚,阻塞处膨胀,形成压应力。 高温时,由于样品表面的温度比较高,吸附在表面的离子和它们生成的中间产物以及附属产 物等就比较容易脱附而逃离表面,返回到反应室中重新生成气体分子,被真空泵抽走,排出 反应室,结果在样品的表面产生较多的空位,最终,生成的膜中由于空位较多,就会引起膜 的收缩,从而易产生张应力。 c. 基板温度还与功率及 、 流量有关,后三者提高,则基板温度也要相应提高。
加热系统:位于石英管外,有五个温区。
PECVD设备结构
冷却系统: 是一套封闭的循环水系统,位于加热系统的金属
外壳,四进四出并有一个主管道,可适量调节流 量大小。 冷却系统的优点:
• 没有消耗净室空气 • 不同管间无热干涉 • 炉环境的温度没有被热空气所提升 • 空气运动(通风装置)没有使房间污染 • 噪音水平低
PECVD设备结构
Setup: 舟的资料的更改,工艺内容的更改,使用权限 的更改,LIFT位置的更改,CMS安区系统 (安装的感应 器将监控重要系统的运行情况,而一旦不受管的计算机的 控制,CMS将会发生作用,所有的错误信息也都会在 CIM上得以简洁的文本方式显示出来)的更改等。
Alarms:警报内容 Help:简要的说了一下解除警报以及其他方面的方法 CESAR:控制电脑,每一个系统都安装了CESAR控制电
PECVD的原理及设备结构
PECVD的原理
PECVD: Plasma Enhance Chemical Vapour Deposition
等离子增强化学气相沉积
等离子体:由于物质分子热运动加剧,相互间的 碰撞就会使气体分子产生电离,这样的物质就会 变成自由运动并由相互作用的电子、正离子和中 性粒子组成混合物的一种形态,这种形态就称为 等离子态即第四态.
防氧化:结构致密保证硅片不被氧化。
均匀性分析
管式PECVD系统由于其石墨舟中间镂空,因此利用了硅 片作为电极的一部分, 因此辉光放电的特性就与硅片表 面的特性有了一定的关系,比如硅片表面织构化所生成的 金子塔尖端的状态就对等离子体放电产生影响,而目前硅 片的电导率的不同 也影响到等离子场的均匀性
PECVD的原理
3SiH4+4NH3 → Si3N4+12H2↑
技术原理:是利用低温等离子体作能量源,样品置于低
气压下辉光放电的阴极上,利用辉光放电(或另加发热体) 使样品升温到预定的温度,然后通入适量的反应气体,气体 经一系列化学反应和等离子体反应,在样品表面形成固态薄 膜。
PECVD的原理及作用
管式PECVD的气流是从石英管一端引入,这样也会造成 工艺气体分布的不均匀
PECVD设备结构
晶片装载区 炉体 特气柜 真空系统 控制系统
PECVD设备结构示意图
PECVD设备结构
晶片装载区:桨、LIFT、抽风系统、SLS系统。
• 桨:由碳化硅材料制成,具有耐高温、防变形等 性能。作用是将石墨舟放入或取出石英管。
PECVD的原理
工作原理:Centrotherm PECVD 系统是 一组利用平行板镀膜舟和高频等离子激发器的 系列发生器。在低压和升温的情况下,等离子 发生器直接装在镀膜板中间发生反应。所用的 活性气体为硅烷SiH4和氨NH3。这些气体作 用于存储在硅片上的氮化硅。可以根据改变硅 烷对氨气的比率,来得到不同的折射指数。在 沉积工艺中,伴有大量的氢原子和氢离子的产 生,使得晶片的氢钝化性十分良好。
SINx薄膜
颜色 硅本色 褐色 黄褐色 红色 深蓝色 蓝色 淡蓝色
氮化硅颜色与厚度的对照表
厚度(nm)
颜色
厚度(nm)
颜色
0-20
很淡蓝色
100-110
蓝色
20-40
硅本色
110-120
蓝绿色
40-50
淡黄色
120-130
浅绿色
55-73
黄色
130-150
橙黄色
73-77
橙黄色
150-180
红色
77-93
• LIFT:机械臂系统,使舟在机械臂作用下在小 车、桨、储存区之间互相移动。
• 抽风系统:位于晶片装载区上方,初步的冷却石墨舟 和一定程度的过滤残余气体
• SLS系统:软着落系统,控制桨的上下,移动范围 在2—3厘米
PECVD设备结构
炉体:石英管、加热系统、冷却系统
石英管:炉体内有四根石英管,是镀膜的 作业区域,耐高温、防反应。
红色
180-190
93-100
深红色
190-210
厚度(nm) 210-230 230-250 250-280 280-300 300-330
PECVD的原理
物理性质和化学性质:
结构致密,硬度大 能抵御碱、金属离子的侵蚀 介电强度高 耐湿性好
PEC的折射率和厚度可 以促进太阳光的吸收。
影响PECVD的工艺参量
(3) 基板温度 用结晶理论进行解释的话:从理论上讲,完整晶体只有在0 K才是稳定的。根据某一确定温 度下,稳定状态取自由能最低的原则,单从熵考虑,不完整晶体更稳定,要想获得更完整的 结晶,希望在更低的温度下生成;但是若从生长过程考虑,若想获得更完整的结晶,必须在 接近平衡的条件下生成,这意味着温度越高越好。非平衡度大时,缺陷和不纯物的引入变得 十分显著。 从工艺上说,温度低可避免由于水蒸气造成的针孔,温度太低,沉积的薄膜质量无保证。高 温容易引起基板的变形和组织上的变化,会降低基板材料的机械性能;基板材料与膜层材料 在高温下会发生相互扩散,在界面处形成某些脆性相,从而削弱了两者之间的结合力。 因此在实际的生长过程中可综合考虑上述两个因素,选择合适的生长温度,使薄膜的结晶程 度达到最佳。本工艺中基片温度大约在400℃。
冷却系统示意图
PECVD设备结构
特气柜:MFC 气动阀
MFC:气体流量计(NH3 CF4 SiH4 O2 N2)
SiH4
1.8 slm
NH3
10.8 slm
CF4
3.6 slm
O2
3 slm
N2
15 slm
气动阀:之所以不用电磁阀是因为电磁阀在工作时
容易产生火花,而气动阀可以最大程度的避免火花。
脑及CESAR 控制软件,此控制电脑独立于主电脑系统中。
判断PECVD 的产出硅片的质量
亮点 色斑
镀膜时 间太短
色斑
色差
水纹 印
影响PECVD的工艺参量
(1) 工作频率、功率 PECVD工艺是利用微波产生等离子体实现氮化硅薄膜沉积。微波一般工作频率为 2.45GHz,功率范围为2600W—3200W。高频电磁场激励下,反应气体激活,电离 产生高能电子和正负离子,同时发生化学沉积反应。功率,频率是影响氮化硅薄膜生 长的重要因素,其功率和频率调整不好,会生长一些有干涉条纹的薄膜,片内薄膜的 均匀性非常差。 ①. 工作频率是影响薄膜应力的重要因素。薄膜在高频下沉积的薄膜具有张应力,而在 低频下具有压应力。绝大多数条件下,低频氮化硅薄膜的沉积速率低于高频率薄膜, 而密度明显高于高频薄膜。所有条件下沉积的氮化硅薄膜都具有较好的均匀性,相对 来说,高频薄膜的沉积均匀性优于低频氮化硅薄膜。 在低频下等离子体的离化度较高,离子轰击效应明显,因此有助于去除薄膜生长中的 一些结合较弱的原子团,在氮化硅薄膜沉积中,主要是一些含氢的原子团,因此,低 频氮化硅薄膜中的氢含量相对较低,薄膜的沉积速率也较低,同时,离子轰击使薄膜 致密化,使薄膜密度较大并表现出压应力。在高频下,由于离子轰击作用较弱,薄膜 表现为张应力。 近期的研究发现,氮化硅薄膜的腐蚀速率与应力有密切的关系,压应力对应于较低的 腐蚀速率,而张应力对应于较高的腐蚀速率。(消除应力的一种方法是采用两套频率 不同的功率源交替工作,使总的效果为压缩应力和舒张应力相互抵消,从而形成无应 力膜。但此方法局限性在于它受设备配置的限制,必须有两套功率源;另外应力的变 化跟两个频率功率源作用的比率的关系很敏感,压应力和张应力之间有一个突变,重 复性不易掌握,工艺条件难以控制)。 ②. 功率对薄膜沉积的影响为:一方面,在PECVD工艺中,由于高能粒子的轰击将使 界面态密度增加,引起基片特性发生变化或衰退,特别是在反应初期,故希望功率越 小越好。功率小,一方面可以减轻高能粒子对基片表面的损伤,另一方面可以降低淀 积速率,使得反应易于控制,制备的薄膜均匀,致密。另一方面,功率太低时不利于 沉积出高质量的薄膜,且由于功率太低,反应物离解不完全,容易造成反应物浪费。 因此,根据沉积条件,需要选择合适的功率范围。