第二部分污水处理厂一、工艺流程典型的城市污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段,如图1。
由机械处理以及生化处理构成的系统属于二级处理系统,其BOD5 和 SS 去除率可达到9 0%~ 98%。
处理效果介于一级和二级处理之间的一般称为强化一级处理、一级半处理或不完全二级处理,主要有高负荷生物处理法和化学法两大类,BOD5 去除率可达到45%~ 75%。
具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。
为了去除特定的物质,在二级处理之后设置的处理系统属三级处理,例如化学除磷、絮凝过滤、活性炭吸附等。
机械处理工段机械(一级)处理工段包括格栅、污水提升泵房、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。
机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5 和 SS 的典型去除率分别为25%和 50%。
生化处理工段生化处理是整个污水处理过程的核心,因此我们称污水处理工艺是特指这部分,如氧化沟法、 SBR 法、 A/O 法等。
污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的。
目前大多数城市污水处理厂都采用活性污泥法。
生化处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO 2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀固液分离,从净化后的污水中除去。
污泥处理工段生化处理工段的污泥,先到污泥泵房,部分污泥回流至生化处理工段,另一部分污泥(剩余污泥)用污泥泵快速输入到污泥浓缩池。
污泥浓缩池浓缩一定时间后,上清液回流到污水提升泵房的集水池;浓缩后的污泥再回到另一格污泥调节池,用污泥泵提升到污泥脱水机房。
污泥在脱水机房脱水后,制成泥饼外运。
格栅曝气池反应池二沉池二、常见的污水处理工艺目前,常见的污水处理工艺有 A 2/O 法、氧化沟法、SBR 法、 CASS 法、 CAST 法、 AB 法、生物接触氧化法(BOC )、曝气生物滤池(BAF )、生物膜法等。
A2/O 法A 2/O 生物脱氮除磷工艺是传统活性污泥工艺、生物消化及反消化工艺和生物除磷工艺的综合,其工艺流程图如图2。
生物池通过曝气装置、推进器(厌氧段和缺氧段)及回流渠道的布置分成厌氧段、缺氧段、好氧段。
在该工艺流程内,BOD5 、SS 和以各种形式存在的氮和磷将一一被去除。
A 2/O 生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。
在好氧段,硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。
以上三类细菌均具有去除BOD5 的作用,但BOD5 的去除实际上是以反硝化细菌为主。
以氧化还原电位(ORP)和溶解氧( DO)为主要控制参数,来对曝气系统、内回流系统、外回流系统、剩余污泥排放系统进行控制,以实现良好的除磷脱氮效果,有效地降低污水中的 BOD5 ,同时最大限度地节约能源,使整个系统高效稳定地运行。
氧化沟法氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。
它是活性污泥法的一种变型。
因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池、”“无终端曝气池。
” 氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。
氧化沟利用连续环式反应池(Cintinuous Loop Reator,简称 CLR )作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。
氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。
氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L 形、圆形或其他形状,沟端面形状多为矩形和梯形。
其工艺流程图如图4。
氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。
因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。
氧化沟能保证较好的处理效果,这主要是因为巧妙结合了CLR 形式和曝气装置特定的定位布置,是氧化沟具有独特水力学特征和工作特性。
随着氧化沟工艺的发展,目前,在工程应用中比较有代表性的形式有:多沟交替式氧化沟(如三沟式、五沟式)及其改进型、卡鲁塞尔氧化沟及其改进型、奥贝尔(Orbal)氧化沟及其改进型、一体化氧化沟等。
SBR 法SBR 是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR 技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统,其工艺流程图如图3。
SBR 法工艺具有以下特点:工艺运行简单,基本实现无需搬运操作,进水、曝气、沉淀、排水、闲置五道程序可由PL C 实现程序控制,运行的程序也可根据水质变化情况重新编排,使本来十分繁琐的操作变成全自动运行;耐冲击负荷。
污水逐渐进入池内,被池内的水缓慢稀释,污水与原池内的水的比例是逐渐提高的,所以耐水质变化的冲击;出水水质好。
池内水沉淀时是在水平流速为零的理想静止状态下沉淀,沉淀效果好。
池内溶解氧值交替变化。
沉淀排水时,溶解氧接近零,抑制了丝状菌的生长,污泥沉淀性能好;能耗低。
由于池内溶解氧的交替变化,使溶解氧浓度梯度大,提高了氧的利用率。
没有污泥回流系统,节省了能耗,降低了运行费用;SBR 可实现连续进水,污水量较小时只需设置一个池子即可运行,省去了污水流量随时间变化分配的自动控制阀门,只设一台滗水器,池子结构形式也更为简单。
ìAB 法AB 法(Adsorption Biodegradation )是一种新型的两段生物处理工艺,与普通活性污泥法相比,它具有高效、稳定、节省能耗、造价低等优点。
典型的 AB 工艺流程:污水——格栅——沉沙池—— A 段曝气池——中间沉淀池(污泥回流至 A 段曝气池)—— B 段曝气池——二次沉淀池(污泥回流至 B 段曝气池)——出水。
AB 法技术上的突破主要在 A 段:该段前省去了初沉池, A 段曝气池在高负荷[ ≥2kgBOD5/ ( kg MLSS ?d) ] 、短停留时间( 30min )、低溶解氧(0.5~ 1mg/L )、短泥龄( 0.5~ 0.7d)的条件下运行。
但是,目前对 A 段工艺的工作机理研究尚未取得突破性进展,例如 A 段工艺在无污泥再生的条件下却能保持微生物的活性和良好的污泥沉降性能,这是传统的微生物吸附氧化机理所不能解释的。
具有优良的污染物去除效果,较强的抗冲击负荷能力,良好的脱氮除磷效果和投资及运转费用较低等。
(1)对有机底物去除效率高。
(2)系统运行稳定。
主要表现在:出水水质波动小,有极强的耐冲击负荷能力,有良好的污泥沉降性能。
(3)有较好的脱氮除磷效果。
( 4)节能。
运行费用低,耗电量低,可回收沼气能源。
经试验证明,AB 法工艺较传统的一段法工艺节省运行费用20%~25% 。
三、污水处理厂对周遍环境的污染毫无疑问,污水处理厂在改善城市环境、节约水资源、提高居民质量方面发挥了巨大的作用,成为市政和环保工作的重要组成部分。
但由于其自身的特殊性,绝大多数污水处理厂在改善城市环境的同时,又成为新的污染源,对周遍环境造成不同程度的污染。
主要表现为恶臭、噪声、污泥和出水不能达到国家GB 8978-1996 二级排放标准四个方面。
3.1 恶臭污染3.1.1 恶臭的定义恶臭是指大气、水、土壤、废弃物等物质中的异味物质,通过空气介质作用于人的嗅觉器官,并有害人体健康的一类公害气态污染物质。
3.1.2 恶臭的危害恶臭物质数目繁多,恶臭源分布广泛。
人们在日常生活中难免会接触到恶臭。
处于高浓度恶臭环境或长期处于恶臭环境中的人会明显感觉到恶臭对人体的不良影响。
这表现在:(1)危害呼吸系统,人闻到恶臭时,对呼吸产生反射性抑制,甚至憋气,妨碍正常呼吸功能。
(2)危害消化系统,经常接触恶臭,会使人食欲不振、产生厌食、恶心,甚至呕吐,进而发展到消化功能减退。
(3)危害循环系统,随呼吸变化,会出现脉搏和血压变化。
如氨会使血压出现先下降后上升现象,硫化氢能阻碍氧的输送,造成体内缺氧。
(4)危害内分泌系统、神经系统、影响精神状态,经常受恶臭刺激,会使人的内分泌系统功能紊乱,导致大脑皮层兴奋和抑制的调节功能失调除对人体的危害外,恶臭污染还能影响动、植物的生长和产量。
3.1 .3 恶臭的基本组成在污水处理厂中的产生的气体组分主要有氮(N2 )、氧( O2 )、二氧化碳( CO2 )、硫化氢( H2S )、氨( NH3 )、甲烷( CH4 )以及一些产生臭味的气体,如胺类、硫醇、有机硫化物、粪臭素、吲哚等微量MVOC 气体。
其中氮( N2)、氧( O2 )、二氧化碳( CO2 )是空气中的常见组分,对污水处理厂不构成任何危害,不需要对其进行处理。
硫化氢( H2S )会产生臭味,影响大气质量,硫化氢是酸性气体,其水溶液为氢硫酸,是一种二元酸,硫化氢酸性气体会对污水管道、建构筑物、污水泵、控制柜、设备等产生酸性腐蚀。
氨( NH3 )会产生臭味。
甲烷( CH4 )是易燃易爆气体,给污水处理厂带来爆炸的危险。
其它一些有机组分产生臭味,影响居民生活和大气质量。
因而污水处理厂需要处理的气体是硫化氢(H2S )、氨( NH3 )等无机气体以及胺类、硫醇、有机硫化物、粪臭素、吲哚等MVOCs 。
3.1.4 污水厂恶臭产生机理臭气被感觉到是因为它从液体中转移到气态,故污水中的臭味物质和促进物质转移的条件是否存在是臭气形成的两个不可缺少的重要条件。
广义上讲,污水处理系统中的臭气可以分为两类: 一类是直接从污水中挥发出来的; 另一类是来自于污水中有机物由于微生物的生物化学反应而新形成的分解物,尤其与厌氧菌的活动有很大的关系另外,由于污水处理系统大具有较大的气液表面,加上水流的紊动,曝气充氧和搅拌设备各种因素使得臭气的发生具有良好的条件。