甲氧基丙烯酸酯类农药一、发现过程甲氧基丙烯酸酯类化合物开始的研究开始于1969年,捷克科学家Musilek等人在一种蘑菇(oudemansiella mucida)中首次发现了strobilurin A ,并将这种物质用于治疗人类的皮肤病。
Oudemansin A是继Strobilurin A之后从腐朽的松木长出的蘑菇中分离出来的具有抗菌活性的天然抗生素。
OOO strobilurin AO O oudemansin A随着越来越多具有杀菌活性的β-甲氧基丙烯酸酯类天然抗生素的相继发现,有关其生物活性、结构确证、作用机理和全合成的研究也越来越多,从而也引起了农药公司和研究人员的极大兴趣。
1982年,英国捷利康公司和德国巴斯夫公司最早展开了该方面的研究工作。
捷利康公司人员研究人员在Strobilurin A的结构基础上进行改造,打破其共轭三烯结构,合成了大量的以β-甲氧基丙烯酸酯衍生物为先导的杀菌剂,但仍未达到田间试用的要求。
生测表明含(E)-β-甲氧基丙烯酸酯的化合物具有一定的生物活性,而含(Z)-式的则没有活性。
1986年获得含天然(E)-β-甲氧基丙烯酸甲酯基团的strobilurins合成物的专利权,1992年成功开发出了嘧菌酯(azoxystrobin),并于1996年成功上市。
2000年又公布了啶氧菌酯,并于2002年上市。
捷利康公司这类最早专利的发布阻碍了巴斯夫公司对该天然毒性基团的研究工作,但是巴斯夫公司发现了(E)-β-甲氧基丙烯酸甲酯的电子等排体,即(E)-甲氧基亚氨基乙酸甲酯基团。
与合适骨架连接后也能提供活性, 并最终实现了醚菌酯(kresoxim-methyl),在1996年上市。
巴斯夫继1996年向市场推出醚菌酯以来,于2002年、2004年和2007年又成功上市了吡唑菌酯、醚菌胺和肟醚菌胺, 其中吡唑菌酯是目前活性最高的丙烯酸酯类杀菌剂。
拜耳1998年公布了肟菌酯,1999年该产品推向市场。
1994年发现氟嘧菌酯,于2004年投放市场。
1998年发现、2001年上市的咪唑菌酮虽然结构上不同于strobilurins类杀菌剂, 但与strobilurins类杀菌剂具有同样的交互抗性基团, 目前该产品也归于拜耳。
日本盐野义是从事该领域研究最早的公司之一,1993年研究发现的苯氧菌胺, 1999年上市, 成为防治水稻稻瘟病的优良杀菌剂。
二、作用机制甲氧基丙烯酸酯类杀菌剂的活性来源于它们能键合在细胞色素b ( Cytb) 的还原型辅酶Q的氧化位点(Qo位点) , 从而抑制线粒体的呼吸作用, 也因此称为Qo 抑制剂。
细胞色素b是细胞色素bc1复合物的一部分, 位于真菌和其他真核体的线粒体内膜, 一旦某个抑制剂与之键合,将阻止细胞色素b和c1之间的电子传递, 通过阻止三磷酸腺苷(ATP) 的产生, 从而干扰真菌体内的能量循环。
三、结构与活性:3侧链桥strobilurins杀菌剂的活性结构(以嘧菌酯为例)活性基团大致可分为:(1)甲氧基丙烯酸酯类,这类品种有嘧菌酯、啶氧菌酯、烯肟菌酯、苯醚菌酯、UBF-307和嘧螨酯(杀螨剂) ;(2)甲氧基氨基甲酸酯类,这类品种有唑菌胺酯;(3)肟基乙酸酯类,这类品种有醚菌酯和肟菌酯;(4)肟基乙酰胺类,这类品种有:苯氧菌胺、醚菌胺、肟醚菌胺和烯肟菌胺;(5)唑烷二酮类,这类品种有恶唑菌酮;(6)咪唑啉酮类,这类品种有咪唑菌酮;(7)肟基二恶嗪类,这类品种有氟嘧菌酯。
这些活性基团基本处于同一活性水平,并优于其它活性基,当其几何异构体由反式E变为顺式Z时,活性降低;当羰基C=O 变为硫代羰基C=S时,活性亦骤减。
大多数化合物中的活性基团都是与苯环相连接的。
苯环则被视为strobilurins类杀菌剂的桥。
变化较多的是侧链,且侧链大多在活性基团的邻位。
在侧链结构中,有芳氧基、杂芳氧基、芳氧烷基和杂芳氧烷基等,有的还在侧链中引入氟原子、氯原子和三氟甲基等吸电子基团,以优化strobilurins类杀菌剂的活性。
四.甲氧基丙烯酸酯类杀菌剂的品种2009年甲氧基丙烯酸酯类杀菌剂总销售额26.28亿美元,占全球市场的5.7%,占杀菌剂市场23.5%。
销售额较004年增长14.8%。
甲氧基丙烯酸酯类杀菌剂主要品种见下表。
活性成分2009年销售额/亿美元上市时间/年公司商品名2009/2004年增长/%嘧菌酯azoxystrobin 9.10 1997 先正达Amistar 12.5 吡唑醚菌酯pyraclostrobin 7.35 2002 BASF Headline、Cabrio、Insignia20.0 肟菌酯trifloxystrobin 4.90 2000 Bayer Flint 14.0 氟嘧菌酯fluoxastrobin 1.50 2004 Bayer Flint 71.9啶氧菌酯picoxystrobin 1.45 2001 DuPont Flint 23.7醚菌酯kresoxim-methyl 1.30 1996 BASF,Rallis Stroby -6.6醚菌胺dimoxystrobin 0.5 2004 BASF Swing Gold 58.5烯肟菌酯enestroburin <0.1 2006 沈阳化工研究院n.a.苯氧菌胺metaminostrobin <0.1 2000 Shionogi Oribright肟醚菌胺orysastrobin <0.1 2007 BASF Arashi n.a.唑菌酯pyraoxystrobin <0.1 2009 沈阳化工研究院n.a.烯肟菌胺SYP-1620 <0.1 2008 沈阳化工研究院n.a.总计26.28 14.81、嘧菌酯嘧菌酯(Azoxystrobin)是世界上第一个商品化的甲氧基丙烯酸酯类杀菌剂。
其作用谱广,几乎可以防治所有真菌(子囊菌纲、担子菌纲、卵菌纲和半知菌类)病害。
适用于谷物、水稻、葡萄、水果、香蕉、大豆、蔬菜、草坪和观赏植物等。
它在对稻瘟病的防治中,既能抑制稻瘟病菌丝生长,又能抑制孢子萌发,对孢子产生、黑色素合成和孢子致病力等都有显著的影响。
这表明嘧菌酯在稻瘟病菌整个生活史中都能起作用,不仅抗真菌侵入、抗真菌扩展,而且能明显地降低再侵染和初侵染的孢子基数并达到防治病害的目的。
嘧菌酯是目前世界上销量最大的杀菌剂,己在72个国家取得登记,用于防治84种不同作物上的400多种病害。
合成方法:HOH3CO2COMeN NCl ClN NOH3CO2COMeOHCNN NO OH3CO2COMeCN 2.醚菌酯醚菌酯用于谷物,可有效防治谷物白粉病、锈病、斑枯病,通过混剂可扩大杀菌谱、延缓抗性产生,也可防治水稻上的稻瘟病、纹枯病及葡萄和蔬菜上的霜霉病。
具有保护、治疗和铲除作用。
与其他甲氧基丙烯酸酯类杀菌剂相比,醚菌酯登记的作物较少,主要用于谷物,其次是葡萄、果蔬和水稻。
在美国,醚菌酯最初用于花卉、苹果、梨和葡萄,后来适用作物不断增加。
白粉病对醚菌酯的抗药性很快就受到关注,但是通过与其他药剂混配使用和合理规范适用频率,在很大程度上延缓了抗性的发生。
由于新品种不断推出和仿制品种的竞争,醚菊酯失去了很大的市场份额。
合成方法:Br 1. Mg2OMeOOMeONH2·HClN OOONBS BrNOOOHONOO3. 吡唑醚菌酯(唑菌胺酯)吡唑醚菌酯是巴斯夫公司2001年末在欧洲市场推出,与氟环唑复配用于防治谷物病害,在50多个国家登记100多种作物,也可用于非农作物,如草坪和观赏植物,也可与啶酰菌胺混配。
该药具有广谱的杀菌活性,适用作物广泛,主要作物市场是大豆、谷物、玉米、葡萄和果蔬。
Herms等2002年发现吡唑醚菌酯可提高烟草抗花叶病毒和烟草假单胞杆菌的能力。
2009年吡唑醚菌酯销售额达7.35亿美元。
2009年巴斯夫公司同意孟山都公司使用吡唑醚菌酯用于种子处理剂,2010年在美国登记。
在短短几年,该品种的市场迅速飙升,已列为所有杀菌剂品种市场的第2位,仅次于嘧菌酯。
合成方法:CH 3NO 2ZnCH 3NH 2OHClCOOCH NaHCO 3CH 3N COOCH 3OH(Me)2SO 4CH 3N COOCH 3OCH 3溴化CH 2BrN COOCH 3OCH 3NNHOClN OO O O N NCl4. 肟菌酯F 3CNOH 3CON COOCH 3肟菌酯2000年由诺华公司开发,不仅杀菌谱广,而且具有保护、治疗、渗透、铲除和杰出的横向传输特性,无内吸活性。
具有耐雨水冲刷和表面蒸发再分配的性能,是广谱的叶面杀菌剂,其高效性及良好的作物选择性使其可有效防治温带、亚热带作物上的病害,不会对非靶标组织造成不良影响,并在土壤和地下水中分解很快。
防治白粉病和叶斑病有特效,也能有效防治锈病、霜霉病、立枯病。
适宜作物为葡萄、苹果、小麦、花生、香蕉、蔬菜和水稻等。
2001年由拜耳公司销售,随后在80多个国家登记并扩大了杀菌谱,主要用于大豆、谷物、玉米、葡萄和果蔬。
销售额稳定增长,但由于竞争激烈,2005—2006年销售额下降,对斑枯病的抗性问题及欧洲的恶劣天气也导致销售额下降,2007年以后销售额上升,2009年达4.90亿美元。
随后肟菌酯的混剂也不断被开发。
合成方法:OKMnO 4COOHO CH 3OHCOOCH 3O COOCH 3NOCH 3Br COOCH 3NOCH 3F 3CNOHNaOCH 3F 3CNOH 3CON COOCH 3ch 3CH ONH ·HCl五、展望甲氧丙烯酸醋类杀菌剂不但具有新颖的作用机制和广泛的杀菌谱、良好的环境相容性, 而且能够提高作物的产量和品质。
在短短10余年时间其已成为农用杀菌剂中的主流产品之一,它的销售市场已超过三唑类,在各类杀菌剂中位列首席。
然而,由于它们作用位点单一,因此杀菌剂抗性行动委员会(FRAC)将其抗性发展归类为“高风险”,抗性问题已经成为甲氧基丙烯酸酯类杀菌剂市场的一个重要问题。
因此,通过开展抗性治理、研发复配制剂和科学合理使用等措施延长甲氧丙烯酸酯类杀菌剂的使用寿命己刻不容缓。