当前位置:文档之家› plc自动打铃系统

plc自动打铃系统

课程设计(论文)题目名称自动打铃控制器设计课程名称PLC原理及应用学生姓名学号系、专业电气工程系、09自动化指导教师尹进田2011年12月29日邵阳学院课程设计(论文)任务书2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):邵阳学院课程设计(论文)评阅表学生姓名学号0941202046系电气工程系专业班级09自动化题目名称自动打铃控制器设计课程名称PLC原理及应用一、学生自我总结二、指导教师评定2、表中的“评分项目”及“权重”根据各系的考核细则和评分标准确定。

摘要学校以及一些企事业单位通常使用电铃声作为上下课、上下班等作息时间信号。

电铃已是学校以及一些企事业单位不可缺少的设备,随着社会的发展不但对其需求量越来越大,对电铃的自动控制要求也越来越高,于是人们设计了通过不同控制方式来实现的自动打铃系统。

本系统是采用三菱PLC控制,通过输出继电器Y与数码管相连显示时间,为了操作的方便用LED代替电铃,具有手动按铃以及自动按铃功能,能通过输入继电器X对系统时间的调节。

该系统具有外设电路配置简单、扩展方便、操作容易,可靠性高实用性强等特点。

该系统用于学校电铃的自动控制,具有周末和假期控制功能和星期与时间的显示功能,实现了作息时间无人控制的自动化、科学化管理与操作。

关键词:作息时间控制系统;PLC;输出继电器Y;数码管;LED;输入继电器X目录摘要 (I)目录 (II)1绪论 (1)1.1 PLC可编程控制器的定义 (1)1.2PLC可编程控制器的特点 (1)2 系统硬件部分设计 (3)2.1硬件整体设计 (3)2.2PLC控制器输入输出点分配 (3)3主程序设计及功能 (5)3.1主程序流程图设计 (5)3.2时间控制显示程序设计 (5)3.3 秒脉冲显示程序 (6)3.4分显示程序 (6)3.5时显示程序 (7)3.6星期显示程序 (8)4 辅助程序设计 (10)4.1自动扫描程序 (10)4.2电铃控制程序 (10)4.3开机显示 (12)参考文献 (14)附录1主要元件清单 (15)附录2系统接线图 (16)致谢 (17)1绪论1.1PLC可编程控制器的定义PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

1.2PLC可编程控制器的特点(1)可靠性高,抗干扰能力强PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线可减少到继电器控制系统的1/10--1/100,因触点接触不良造成的故障大为减少。

高可靠性是电气控制设备的关键性能。

PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。

例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。

一些使用冗余CPU的PLC的平均无故障工作时间则更长。

从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。

此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。

在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。

这样,整个系统具有极高的可靠性也就不奇怪了。

(2)硬件配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品,并且已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。

PLC的安装接线也很方便,一般用接线端子连接外部接线。

PLC有较强的带负载能力,可直接驱动一般的电磁阀和交流接触器,可以用于各种规模的工业控制场合。

除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。

近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。

加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

(3)易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。

它接口容易,编程语言易于为工程技术人员接受。

梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。

为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

(4)系统的设计、安装、调试工作量小,维护方便,容易改造PLC的梯形图程序一般采用顺序控制设计法。

这种编程方法很有规律,很容易掌握。

对于复杂的控制系统,梯形图的设计时间比设计继电器系统电路图的时间要少得多。

PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。

更重要的是使同一设备经过改变程序改变生产过程成为可能。

这很适合多品种、小批量的生产场合。

(5)体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100mm,仅相当于几个继电器的大小,因此可将开关柜的体积缩小到原来的1/2--1/10。

它的重量小150g,功耗仅数瓦。

由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

2 系统硬件部分设计2.1 硬件整体设计设计一个用PLC控制的学校一天内作息时间的自动打铃控制系统,上课铃声与下课铃声要能分开(铃声响的时间不一样,每次打铃的时间为15秒),上课铃为短音:响0.5秒,停0.5秒;下课铃为长音:响2秒,停1秒;其他的铃音为连续音。

上下课时按下表作息时间表打铃,星期六、星期日不打铃,具有时间显示功能,显示器件为LED数码管,显示内容为:分、小时及星期,具有时间(分、小时、星期)调整的功能。

整体系统设计框图如下图2.1。

2.2 PLC控制器输入输出点分配作息时间PLC控制器输入输出点分配表见表2.3所示由于X、Y均采用八进制,所以在输入、输出点中没有X8、X9和Y8、Y9 。

当电路板接通电源之后,我们可以通过X0来运行程序,X1为紧急停止按钮。

X2为手动打铃按钮,可以在需要的情况下打铃。

X3、X4、X5为时间调整按钮,可分别调整分钟、小时和星期。

X6、X7用来开、关学生宿舍的灯。

Y0~Y6为数码管的显示端,而Y10~Y14为数码管的公共端,分别对应星期、分个位、分十位、时个位、时十位。

宿舍灯光、电铃均用LED来替代。

表2.3 PLC控制器输入输出点分配表3主程序设计及功能3.1 主程序流程图设计系统设计是按照每天循环,系统读取PC机时间后,通过比较时间来确定什么时候打铃和打铃时间。

工作流程为:启动系统、读取时间、开启时间比较、按作息时间打铃、结束。

工作流程框图如下图3.1。

3.2 时间控制显示程序设计时间显示程序分秒脉冲显示、分钟显示、小时显示以及星期显示,当秒脉冲计数60次之后向分钟进位。

当分钟显示数码管显示到59之后又向小时进位,而小时则是用了一个计数器,当计数器计了24次之后向星期进位,同理星期显示也是用了一个计数器,7次之后使程序全部复位。

3.3 秒脉冲显示程序秒脉冲程序梯形图如图3.2所示。

当按下SB0时,X0闭合,发出启动信号,使辅助继电器M200线圈得电并自锁。

计时器T0、T1组成1S时钟脉冲程序;Y15为秒闪烁输出;M0、C0组成分进位脉冲。

图3.2秒脉冲程序梯形图当按下启动按钮X0之后,M200导通并自锁,而接通电源之后M1、M13、M21、M33也随之导通,所以开机接通电源时会立刻显示星期一00时00分,M200的导通后,由T0、T1共同发出一个1S的脉冲,使得Y15每秒亮一下。

而C0也开始计数,60次之后使M0导通。

M0一方面使C0清0,另一方面发出的脉冲信号使SFTL移位。

此时M2导通,使M1断电,分个位由“0”变为“1”。

以此类推。

3.4分显示程序分显示程序梯形图如图3.3所示。

由辅助继电器M1~M10分别接通分个位显示程序。

当M1闭合时,分个位显示“0”;当M2闭合时,分个位显示“1”。

初始状态时,辅助继电器M1和M13闭合,分的个位及十位均显示“0”。

当计数器C0累计满60个脉冲时,计数器C0常开触点闭合,辅助继电器M0线圈得电,其常开触点闭合,产生一个分个位脉冲及一个分个位移位脉冲。

分个位移位脉冲的到来,使得移位指令将M1当前的“1”状态左移一位至M2,辅助继电器M2闭合,分的个位上显示“1”;若再来一个移位脉冲,移位指令将M2当前的状态左移一位至M3,辅助继电器M3闭合,分的个位上显示“2”;以此类推。

当分个位脉冲满10个时,M1的状态已移位至辅助继电器M11中,M11线圈通电,其常开触点闭合,使辅助继电器M2~M10复位,辅助继电器M1又闭合,分个位上又显示为“0”,辅助继电器M2~M10复位,为下一次分个位循环显示作好准备。

同时,M11常开触点闭合,使辅助继电器M12产生一个扫描周期的上升沿脉冲。

这个上升沿脉冲使得辅助继电器M13当前的“1”状态移位至M14中,分的十位上显示“1”,以此类推。

当分十位脉冲满6个时,M13的状态已移位至辅助继电器M19中,M19线圈通电,其常开触点闭合,使辅助继电器M13~M18复位,辅助继电器M13闭合,分十位上又显示为“0”。

当需要对分进行手动调整时,只需要按下按钮SB4,此时X3闭合,计数器C10计数。

经过1计数后,其常开触点闭合,使得状态继电器S5得电,其一常开触点闭合,产生一个分个位脉冲,改变分的当前显示,而状态继电器S5的另一常开触点闭合,使计数器C10复位,为下一次计数做好准备。

图3.3分显示程序梯形图3.5 时显示程序时显示程序梯形图如图3.4所示。

由辅助继电器M21~M30分别接通时个位显示程序。

当M21闭合时,时个位显示“0”;当M22闭合时,时个位显示“1”;当M23闭合时,时个位显示“2”。

以此类推。

由辅助继电器M33~M35分别接通时十位显示程序。

当M33闭合时,时十位显示“0”;当M34闭合时,时十位显示“1”;当M35闭合时,时十位显示“2”。

初始状态时,因辅助继电器M21和M33闭合,故时的个位及十位均显示为“0”。

当分十位脉冲满6个时,M13的状态已移位至辅助继电器M19,M19线圈通电,其常开触点闭合,使辅助继电器M20产生一个扫描周期宽的上升沿脉冲。

相关主题