目录1 前言 (1)1.1 本文研究背景 (1)1.2 国外研究现状 (1)1.2.1高压电气设备发展现状 (1)1.2.2变电所一次设备主接线方式的现状 (1)1.2.3变电站综合自动化二次回路现状 (2)1.2.4 变电站综合自动化的发展现状 (2)1.3 研究目的和意义 (2)2 110KV变电所初步设计说明书 (3)2.1主变压器选择 (3)2.1.1变压器绕组与调压方式的选择 (3)2.1.2变压器相数的选择 (3)2.1.3变压器容量和台数的选择 (3)2.1.4变压器的冷却方式 (4)2.2 电器主接线选择 (4)2.2.1主接线设计原则 (4)2.2.2主接线方式选择 (5)2.3 短路电流计算 (6)2.3.1短路电流计算的目的 (7)2.3.3短路电流计算的步骤 (8)2.3.4短路类型及其计算方法 (8)2.4.主变压器的选择 (9)2.4.1电气的选择原理 (9)2.4.2 高压断路器的选择和校验 (9)2.4.3 隔离开关选择 (10)2.4.4母线的选择 (10)2.4.5 电压互感器选择 (11)2.4.6 电流互感器的选择 (12)2.5配置全所的继电保护 (12)2.5.1 110kv侧进出线及母线的继电保护 (13)2.5.2 35kV侧进出线及母线的继电保护 (14)2.5.3 10kV侧出线的继电保护 (15)2.5.4 变压器的继电保护 (15)2.6 变电站自动化 (15)2.6.1变电站自动化的基本概念 (15)2.6.2变电站综合自动化系统应能实现的功能 (16)3 110KV变电所初步设计计算书 (17)3.1短路电流计算 (17)3.2断路器的选择 (18)3.2.1 110kV侧断路器的选择 (18)3.2.2 35kV侧断路器的选择 (19)3.2.3 10kV侧断路器的选择 (20)3.3 隔离开关的选择 (21)3.3.1 110kV侧隔离开关的选择 (21)3.3.2 35kV侧隔离开关的选择 (22)3.3.3 10kV侧隔离开关的选择 (22)3.4电流互感器的选择 (23)3.4.1 110kV进线及母联电流互感器选择 (23)3.4.2 35kV进线及母联电流互感器选择 (24)3.4.3 10kV进线及母联电流互感器选择 (24)3.5 继电保护的配置 (25)3.5.1 线路的继电保护配置 (25)3.5.2变压器的继电保护 (26)3.6 防雷保护计算 (27)4 结论 (27)后记: (27)参考文献: (28)附录: (30)图一总平面布置图图 (30)图二:电气设备接线图 (31)图三:避雷针保护围图: (33)1 前言1.1 本文研究背景变电站是电力系统中不可缺少的重要环节,它担负着电能传递和电能重新分配的繁重任务,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,对电网的安全和经济运行起着举足轻重的作用。
本文对110KV区域降压变电所的设计进行了研究。
1.2 国外研究现状1.2.1高压电气设备发展现状随着我国电力系统逐渐向大电网、超高压、大容量等的迅速发展,高压开关设备在近些年来也都有了很大程度上的发展,并且不断向小型化、无油化、免维护(或者少维护)、高可靠性等方向发展,高耗能的变电设备也在逐步进行淘汰。
近几年来世界上各个国家的著名的电气设备公司都在相继研制、开发了各种类型的高压或是超高压型GIS组合电器。
随着GIS 气体封闭式组合电器不断完善及电力系统的需要,全国各地区110kV及以上电压等级的变电站的高压设备选用GIS组合电器已成为110kV变电站的最主要的发展趋势。
国家电力公司目前也正在积极地推广该系列GIS组合电器,并在500kV变电站逐步进行工业性应用试验。
这些GIS组合电器运行可靠性高、施工安装简单、节省占地面积和空间、运行维护方便,是高压电气设备未来发展的一个主要方向,也符合我国国情和技术发展的大方向。
1.2.2变电所一次设备主接线方式的现状通常,110kV变电站最常用的主接线方式主要有:单母线、单母线分段带旁路、单母线分段、双母线分段带旁路、双母线、1个半断路器接线、线路变压器组接线及桥形接线等。
随着生产厂生产的高压电气设备质量的不断提高以及电网可靠性要求的增加,变电站主接线方式简化趋于可能。
例如,高压断路器是变电站主要的电气设备,其制造技术再近年来有了很大程度的发展,可靠性也大大提高,维护时间较少甚至免维护。
特别是国外一些知名生产厂家的超高压断路器一般均可达到20年左右不大修,更换元件费时也很短。
因此,从形式上看,变电站一次系统主接线的发展过程经历了由简单到复杂,再由复杂回到简单的过程。
近期,国新建的部分110kV电压等级的枢纽变电站的主接线采用双母线不带旁路母线。
在采用GIS的情况下,优先采用单母线分段接线。
而在终端变电站中,应尽量采用线路变压器组接线方式等。
1.2.3变电站综合自动化二次回路现状综合自动化变电站中,二次设备是按每一次电气单元配置,二次接线也是按电气单元,以一对一的方式连接不同电气单元之间,只有保护之间配合的连接,操作闭锁回路需要的连接,相应之间的连接大为减少对变电站的一些公用二次设备和一些不属于各个电气单元的二次设备将它们组合为公用屏。
这样,从变电站整体来看,二次回路的接线比较合理,系统性强,也有规律,使运行维护人员易于掌握。
1.2.4 变电站综合自动化的发展现状变电站综合自动化是在计算机技术及网络通信的基础上发展起来的。
国外从80年代初就开始进行研究开发,迄今为止,各大电力设备生产厂家都陆续地推出了系列产品。
如ABB、德国AEG公司、SIEMENTS、法国阿尔斯通公司、美国西屋公司、日本日立等公司,都分别推出自己的变电站综合自动化产品。
世界各国新建的变电站也大都是采用了全数字化的二次设备,相应采用了变电站综合自动化技术。
并且随着IEC相关标准的不断颁布,工业国家的变电站综合自动化技术已进入规发展的阶段。
我国对变电站综合自动化的研究及设计开发相对于世界发达国家来说比较晚,我国对变电站综合自动化的研究及设计开发相对于世界发达国家来说比较晚,大约从90年代开始,初期阶段主要研制和生产集中式的变电站综合自动化系统。
90年代中期,开始研制分散式变电站综合自动化系统,与国外先进水平相比,自动化产品的差距不断减小。
许多高校、制造厂家、科研单位以及规划设计、运营部门和基建在学习与借鉴国外先进技术的同时,正在结合我国的实际情况,共同努力继续开发设计更加符合我国国情的变电站综合自动化系统。
1.3 研究目的和意义通过本课题的设计,熟悉110KV变电站的相关设计知识要点,学习和熟悉变电所电器部分设计的基本方法,是对自己所学知识的一次实际运用和深入理解,同时,也深化了我的业务水平和知识层次,有助于更好的解决以后遇到的问题。
随着我国电力工业的迅速发展,对变电站的设计提出了更高的要求,对变电站工作人员的业务水平有更专业化的要求,这就需要我们提高自己的知识水平,不断学习深造,综合运用所学知识,做到学以致用,锻炼我们独立分析解决问题的能力,适应我国电力行业发展的在需求。
2 110KV变电所初步设计说明书2.1主变压器选择2.1.1变压器绕组与调压方式的选择(1)绕组连接方式参考《电力工程电气设计手册》和相应规程指出:变压器绕组的连接方式必须和系统电压一致,否则不能并列运行。
电力系统中变压器绕组采用的连接方式有Y和△型两种,而且为保证消除三次谐波的影响,必须有一个绕组是△型的,我国110kV及以上的电压等级均为大电流接地系Y的连接方式,而6-10kV侧采用△型的连接方式。
故该110kV 统,为取得中性点,所以都需要选择N变电站主变应采用的绕组连接方式为:Y N, 。
(2)调压方式的确定变压器的电压调整是用分解开关切换变压器的分接头,从而改变变压器比来实现的。
切换方式有两种:不带电切换,称为无励磁调压,调压围通常在+5%以,另一种是带负荷切换,称为有载调压,调压围可达到+30%。
对于110kV及以下的变压器,以考虑至少有一级电压的变压器采用有载调压。
由以上知,此变电所的主变压器采用有载调压方式。
2.1.2变压器相数的选择主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。
当不受运输条件限制时,在330kV及以下的发电厂和变电所,均应采用三相变压器。
社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。
2.1.3变压器容量和台数的选择主变容量一般按变电站建成近期负荷5~10年规划选择,并适当考虑远期10~15年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,从长远利益考虑,本站应按近期和远期总负荷来选择主变的容量,根据变电所带负荷的性质和电网结构来确定主变压器的容量,对于有重要负荷的变电所,应考虑当一台变压器停运时,其余变压器容量在过负荷能力允许时间,应保证用户的一级和二级负荷。
所以每台变压器的额定容量按m n P S 7.0=,其中m P 为变电所最大负荷选择,即n S =0.7×38.77=27.14kVA 这样当一台变压器停用时,也保证70%负荷的供电。
由于一般电网变电所大约有25%的非重要负荷,因此采用式m n P S 7.0=来计算主变容量对变电所保证重要负荷来说是可行的。
通过计算本变电站可选择额定容量为31.5MVA 的主变压器。
远期主变压器容量可选用远期3×50MVA 。
为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电站一般装设两台主变压器。
当装设三台及三台以上时,变电所的可靠性虽然有所提高,但接线网络较复杂,且投资增大,同时也增加了配电设备及用电保护的复杂性,以及带来维护和倒闸操作的复杂化。
考虑到两台主变同时发生故障机率较小,且适用远期负荷的增长以及扩建,故本变电站选择两台主变压器完全满足要求。
2.1.4变压器的冷却方式根据变压器型号的不同,其冷却方式有:自然风冷、强迫油循环风冷、强迫油循环水冷、强迫导向油循环等。
油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。
而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。
加装风冷后可使变压器的容量增加30%~35%。
强迫油循环冷却方式,又分强油风冷和强油水冷两种。
它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。
油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。
这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。