当前位置:文档之家› 立体几何的解题技巧

立体几何的解题技巧

立体几何新题型的解题技巧【命题趋向】在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【考点透视】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥. 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥. 在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB⊥平面1A BD . 1AF A D ∴⊥, AFG ∴∠为二面角1A A DB --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB == sin AG AFG AF ∴==∠.所以二面角1A A D B --的大小为 (Ⅲ)1A BD △中,111A BD BD A D A B S ==△1BCD S =△.在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCD C A BD V V --=,得111333BCDA BD S S d =△△,1A BD d ∴=△AB CD1A 1C 1B ACD 1A1C1BO F∴点C 到平面1A BD 的距离为2.解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,,1(123)AB ∴=-,,,(210)BD =-,,,1(123)BA =-,,. 12200AB BD =-++=,111430AB BA =-+-=,1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(113)AD =--,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,. 令1z =得(301)=-,,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n ,111336222AB AB AB -->===-n n .∴二面角1A A D B --的大小为6arccos. (Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(123)BC AB =-=-,,,,,.∴点C 到平面1A BD 的距离112222BC AB d AB -===.小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 例2已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.z AB C D1A1C1BO F y又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE 在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程.考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB ∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1, 作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O .即BD 到平面11D GB 的距离等于362. 解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V 34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362. BACDOGH 1A 11D1B 1O小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题例4如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小. 思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角,CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴12DE AO ==∴在Rt CDE △中,tan CE CDE DE===.∴异面直线AO 与CD所成角的大小为解法2:(I )同解法1.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,(01D ,(00OA ∴=,,(2CD =-,cos OA CD OA CD OA CD∴<>=,6322==∴异面直线AO 与CD 所成角的大小为小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:⎥⎦⎤ ⎝⎛2,0π. 考点5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容.例5.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB=,BC =SA SB ==(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,O CADBExD CAS又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SAB △的面积211122S ABSA ⎛=- ⎝连结DB ,得DAB △的面积21sin13522S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得h = 设SD 与平面SAB 所成角为α,则sin h SD α=所以,直线SD 与平面SBC 所成的我为解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,0)A ,,(0B ,(0C ,,(001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭,连结SE ,取SE 中点G ,连结OG ,12G ⎫⎪⎪⎝⎭,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β所以,直线SD 与平面SAB 所成的角为小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值.考点6 二面角A此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视.例6.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =3sin 30OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.ABCQ αβ P AB CQαβ P OHQ不妨设2AC =,则AO =1CO =.在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以(3AB =-,,(0AC =-,. 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩,取1x =,得1(11n =,,.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,.所以1212cos ||||5nn n n θ===.故二面角B AC P --的大小为小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.考点7 利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题例7如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.(1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,23BG =,点M 在1BB 上, GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.过程指引:解法一: (1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==. 因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而CBAHMDEF1B1A1D1CAHM DEF 1B1A1D 1C NEN AD ∥,1FD CN ∥.又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥. 因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB ==∠∠23132BC BGCF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠21BMBC CF ==+tan EM MH θ=解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,,所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF =,,,由题设得23203GM BF z =-+=, 得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥. 故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥. 而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,.又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是cos 14BPBA BP BAθ==tan θ= 小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF的法向量上的投影的绝对值.。

相关主题