当前位置:文档之家› 化工原理课程设计施

化工原理课程设计施

化工原理课程设计乙醇-水填料式精馏塔设计学生姓名徐程学院名称化学化工学院学号8班级13级2班专业名称应用化学指导教师王菊2016年5月20日摘要填料式精馏塔是化工生产的重要化工设备。

精馏塔不仅对产品本身,而且还对产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各方面都有重大影响。

因此,掌握精馏塔的基本设计对化工专业学生十分重要的。

本课程设计是关于乙醇-水的填料式精馏塔的设计,通过对填料式精馏塔的设计,熟练掌握以及运用所学知识并投入到实际生产当中去。

关键词乙醇;水;填料式精馏塔;化工生产;第一部分概述概述乙醇可用来制取、乙醚、、等化工原料,也是制取、、等产品的原料,所以乙醇是一种重要的化工原料。

如今能源消耗有枯竭的趋势,作为一种可再生的能源,乙醇燃料成为未来代替传统化石燃料的重要能源之一。

国内乙醇生产方法主要有发酵法、乙烯水化法、合成气经醋酸制乙醇、合成气直接制乙醇等,国外乙醇生产方法主要有渗透蒸发技术、新型耦合分离技术、渗透气化膜分离技术、PVA膜渗透汽化等。

塔设备作为工业生产上最重要的设备之一,在工业生产乙醇的分离中起重要作用。

在塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。

乙醇-水是工业上最常见的溶剂,也是十分重要的化工原料之一。

长期以来乙醇-水溶液通常都是通过蒸馏法生产,但由于乙醇-水的共沸现象,普通的精馏方法对于高纯度的乙醇来说产量不好,所以设计研究和改进精馏设备是十分重要的。

本课程设计主要是采用填料精馏塔对乙醇-水溶液进行分离。

塔设备在经过长期的发展,形成了形式繁多的结构,以满足各方面的特殊需要。

在乙醇的工业生产中,主要是通过精馏塔将产物乙醇与水分离,制取高纯度的乙醇。

按塔的内件结构的不同可以分为板式塔和填料塔两大类。

填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的底部安装填料支撑板,填料随意乱堆或整砌的方式放置在支撑板上。

填料上方安装有填料压板,以防填料被上升气流吹动。

填料塔塔内填充适当高度的填料,以增加两种流体间的接触表面。

液体沿填料表面呈膜状向下流动,作为连续相的气体则自下而上地流动,与液体逆流传质。

两相的组分浓度沿塔高呈连续变化。

作为产物分离中的最重要的设备之一的塔设备,随着塔设备技术的发展,国内外制定了多种企业接触的元件,从而改善塔设备质量,缩短塔设备的制造、安装周期,以此来减少设备的投资费用。

文献综述填料类型气-液传质设备主要分为板式塔和填料塔两大类。

精馏操作既可采用板式塔,也可采用填料塔,板式塔的设计将在其他分册中作详细介绍,故本书将只介绍填料塔。

新型高效规整填料的不断开发与应用,冲击了设备以板式塔为主的局面,且大有取代板式塔的趋势。

最大直径规整填料塔已达14~20m,结束了填料塔只适用于小直径塔的历史。

这标志着填料塔的、塔内件及填料塔本身的综合设计技术进入了一个新阶段。

纵观填料塔的发展,新型填料的研究始终十分活跃,尤其是新型规整填料不断涌现。

如今,填料主要分为散堆填料、规整填料和毛细管填料。

填料塔填料塔也是传质过程常用的塔设备,它的主要优点是生产能力大,分离效率高,压降小,持液量小操作弹性大等。

填料塔的缺点是填料造价高;当液体负荷较小时不能有效地润湿填料的表面,使传质效率下降;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂蒸馏不太适合等。

拉西环是最古老、最典型的一种填料,由于它结构简单,制造容易,价格低廉,性能指数较为齐全以及机械强度高,因此长久以来,尽管它存在严重缺点,但是仍受到厂家的欢迎,沿用至今。

拉西环的缺点是结构不常开,有效空隙率比实际空隙率小得多,所以压力降比较大。

拉西环在塔内的填料方式有两种:乱堆和整砌。

乱堆装卸比较方便,但是压力降比较大,一般直径在50mm以下的拉西环用乱堆填料,直径在50mm以上的拉西环用整砌填料。

当填料的名义尺寸小于20mm时,各本身的填料分离效率都明显下降。

因此,25mm的填料可以认为是工业填料中选用比较合理的填料。

本次设计采用的为金属拉西环25mm×25mm×。

表1 金属拉西环25mm×25mm×参数项目参数项目参数公称直径D=25mm 比表面积σ=220m/m外径d=25mm 空隙率ε=95%高度h=25mm 堆积个数N=55000个/m壁厚Δ=堆积密度ρ=640kg/m 干填料因子a/ε=257/m等板高度H=湿填料因子Φ=390/m平均压降Δp=m设计任务书设计题目乙醇-水填料式精馏塔设计设计条件①常压p=1atm(绝压)。

②原料来自粗馏塔,为95~96℃饱和蒸汽,由于沿程热损失,进精馏塔时,原料温度约为90℃③塔顶浓度为含乙醇%(质量分数)的乙醇,产量为25吨/天;④塔釜采用饱和蒸汽直接加热,从塔釜出来的残液中乙醇浓度要求不大于%(质量分数);⑤塔顶采用全凝器,泡点回流,回流比R=~;⑥厂址:徐州地区设计任务1、完成该精馏塔的工艺设计,包括辅助设备及进出口管路的计算和选型;2、画出带控制点工艺流程图、x~y 相平衡图、塔板负荷性能图、塔板布置图、精馏塔工艺条件图;3、写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。

设计思路乙醇-水溶液通过离心泵进入再沸器中,经过加热接近或达到泡点后,从底部进入填料式精馏塔中,在填料上易挥发组分乙醇进入气相,而难挥发组分水进入液相。

易挥发组分乙醇通过塔顶管道进入冷凝器中,在冷凝器中由于温度降低乙醇冷凝,为了保证塔顶浓度为含乙醇%(质量分数),将冷凝器中的溶液重新回到填料式精馏塔中,重新蒸馏。

精馏塔底部的液体回到再沸器中重新加热至泡点温度。

经过重复多次精馏,在冷凝其中可以得到高纯度的乙醇,然后将乙醇通入储罐中。

塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。

最终,完成乙醇和水的分离。

乙醇—水混合液经原料预热器加热,进料状况为汽液混合物q=1 送入精馏塔,塔顶上升蒸汽采用全凝器冷凝,一部分入塔回流,其余经塔顶产品冷却器冷却后,送至储罐,塔釜采用直接蒸汽加热,塔底产品 1-1)得: (1-2) y x y i B B BA i x P V ) 得 )1()1(A A A A B A B A i x x y y x x y y --==α (1-4)将上表数据代入得:序号 1 2 3 4 5 α序号 6 7 89 10则 绘制t-x-y 图及x-y 图表3乙醇—水系统t —x —y 数据沸点t/℃乙醇摩尔数/% 沸点t/℃ 乙醇摩尔数/%气相 液相 气相 液相 82根据上面表中的数据绘制乙醇-水的t-x-y 相图,如下: 图2 乙醇-水相图有图可知:=t F 84℃, =t D 79℃, =t w 100℃ 精馏段平均温度:m t =(t F +t D )/2=(84+79)/2=℃ 提馏段平均温度:m t =(t F +t w )/2=(84+100)/2=92℃全塔物料衡算查阅相关文献,整理有关物性参数表4 乙醇-水物性参数项目数值 天处理原料能力 F=30t/天质量分数 ωF= ωD= ωW= 分子量M 乙醇=kmolM 水=kmol进料液及塔顶、塔底产品的摩尔分数F :进料量(kmol/h ) F x :原料组成(摩尔分数。

下同) D :塔顶产品流量(kmol/h ) D x :塔顶组成 W :塔底残液流量(kmol/h )Wx :塔底组成根据公式 :BBA A A A A M wM w M w n +=(1-5)原料液乙醇的摩尔组成 F x =01.18/68.007.46/32.007.46/32.0+=塔顶产品乙醇的摩尔组成 D x =0.9241/46.070.9241/46.070.0759/18.01+ =0.8264塔底残夜乙醇的摩尔组成 W x =0.003/46.070.003/46.070.997/18.01+0.001175=平均摩尔质量根据公式可得: b a a a M x M x M )1(_-+= (1-6) 原料液的平均摩尔质量: 馏出液的平均摩尔质量: 塔釜残液的平均摩尔量:全塔物料衡算:进料量:F =30吨/天=h kmol /878.552401.1868.03000007.4632.030000=⨯+⨯全塔物料衡算式:F=D+W 解之得:D= kmol/h ,W=h表5物料衡算表 项 目数 值 进料流量F ,kmol/h 塔顶产品流量D ,kmol/h 塔釜残液流量W ,kmol/h 进料组成,xF(摩尔分数) 塔顶产品组成,xD(摩尔分数) 塔釜残液组成,xW(摩尔分数)最小回流比的计算和适宜回流比的确定最小回流比平衡线方程x xx x x x y 04.2104.3)104.3(104.3)1(1+=-+=-+=αα因为 1=q 所以1553.0==F q x x相平衡方程: ()359.011=-+=xxy q αα泡点进料 : q y y = 最小回流比 : 295.21553.0359.0359.08264.0min =--=--=qq q D x y y x R确定最适操作回流比R因为()min 0.2~1.1R R =所以取443.3295.25.15.1min =⨯==R R热量衡算已求得:=D t 78℃ =W t 100℃ =F t 80℃ 1t =℃ 2t =92℃D t 温度下: 1p C = kJ/(kmol·K) 2p C = kJ/(kmol·K)=⨯⨯ = kJ/(kmol·K)Wt 温度下:1p C =(kmol·K) 2p C= kJ/(kmol·K) =⨯⨯= kJ/(kmol·K) D t 温度下:1γ=kg ; 2γ=kg ;= ⨯ = kJ/kg (1)0℃时塔顶气体上升的焓V Q塔顶以0℃为基准, D D pD VM V t C V Q ••+••=γ=⨯⨯⨯⨯ = kJ/h (2)回流液的焓R Q=D t 78℃温度下1p C = kJ/(kmol·K) 2p C = kJ/(kmol·K) =⨯⨯ = kJ/(kmol·K) D p R t C L Q ••==⨯⨯ kJ/h(3)塔顶馏出液的焓D Q因馏出口与回流口组成一样,所以 D p D t C D Q ••==⨯⨯ kJ/h(4)冷凝器消耗的焓C QDR V C Q Q Q Q --== kJ/h(5)进料口的焓F QF t 温度下:1p C =(kmol·K); 2p C =(kmol·K);=⨯⨯=所以 F p F t C F Q ••==⨯⨯塔底残液的焓W Q=⨯⨯ =kJ/(kmol·K) (7)再沸器B Q塔釜热损失为10%,则η=设再沸器损失能量 B Q Q 1.0=损, DW C F B Q Q Q Q Q Q +++=+损 加热器的实际热负荷 =++ =h求理论板数及加料精馏段:精馏段操作线方程: 提馏段:提馏段操作线方程:001152.098.11-=+m m x y (1-12)理论板数及加料板位置精馏段:由平衡线方程的:y yx ⨯-=04.204.3与172.07913.01+=+n n x y 联立已知y1=xD=x1=110.61033.04 2.04y y =-依次类推,可得:x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 x 5 y 5 x 6y 6由于x 3=>x F = x 4=<x q =所以在第3和第4块塔板之间进料。

相关主题