当前位置:
文档之家› 第3篇14动态力学分析(DMA)优秀课件
第3篇14动态力学分析(DMA)优秀课件
1
动态力学分析基础
材料的粘弹性
普弹性:外力作用下立即产生形变,外力除去后,形变 立即回复,形变对外力的响应是瞬间的。固体材料都具 有上述弹性。
理想弹性体的应力-应变关系服从虎克定律,即应力与应 变成正比,比例系数为弹性模量: σ=Eε
弹性模量表示材料的刚度,即材料抵抗变形的能力。外 力对材料做的功全部以弹性能的形式储存起来。
聚合物动态力学试验方法很多,按照形变模式 分为拉伸、压缩、弯曲、扭转、剪切等。测得 的模量取决于形变模式,因而弹性模量有拉伸 模量、压缩模量、剪切模量等之分。
按照振动模式分为自由衰减振动法、强迫共振 法、强迫非共振法等。
13
14
强迫非共振法
强迫非共振法是指强迫试样以设定频率振动,测定试 样在振动时的应力、应变幅值以及应力与应变之间的 相位差。
7
动态力学分析基础静态粘弹性来自动态粘弹性材料的静态粘弹性主要表现在蠕变和应力松弛两个方 面。
蠕变(creep)是指材料在恒定应力下,形变随时间增加 而增加的现象。对于高分子材料,高聚物分子构象发 生变化,受分子相互作用的影响,分子相对移动而取 向重排,这种行为不能瞬时完成而需一定的时间,因 此在整个蠕变过程中表现出不同的蠕变阶段。包括三 种形态:即普弹形变、高弹形变和塑性形变。材料的 总形变为:
2
动态力学分析基础
材料的粘弹性
黏性:材料受到外力时,理想黏性体的应变随时间线 性增加,去除外力后,产生的形变完全不可回复。外 力做的功全部以热能的形式消耗掉了,用以克服分子 间的摩擦力从而实现分子间的相对迁移。
理想黏性流体的流变行为服从牛顿定律,即应力与应 变速率成正比,比例系数为黏度。以剪切为例,牛顿 定律表达式为: τ=ηdγ/dt =ηγ
ε=ε1+ε2+ε3
8
动态力学分析基础
静态粘弹性与动态粘弹性
应力松弛(stress relaxation)指高聚物在恒应变下应力 随时间衰减的现象。
应力松弛不仅反映聚合物的结构特征,而且可帮助了 解在实际生产中,塑料制品成型后形状不稳定(翘曲、 变形、应力开裂)的原因及寻求稳定产品质量的工艺 方法。退火过程实际上就是维持固定形状而促进应力 松弛的过程。
材料的粘弹性
聚合物是典型的粘弹性材料,兼有粘性流体和 弹性固体的某些特性。当聚合物作为结构材料 使用时,主要利用它的弹性和强度,要求它在 使用温度范围内有较大的储能模量。当聚合物 作为减震和吸音材料使用时,主要利用它的粘 性,要求在一定频率范围内有较高的阻尼(将
固体机械振动能转变为热能而耗散的材料 )。
损耗模量E″,因粘性形变而以热的形式损耗的能量;
E" = (stress/strain)sin
力学损耗tanδ,损耗模量与储能模量的比值,是材料阻 尼能力的度量。
tan = E"/E'
研究材料的动态力学性能的目的,就是要精确测量各 种因素对动态模量E ‘ 、E″及损耗因子tanδ的影响。
12
动态力学分析技术
耗模量E”、力学损耗tgδ
17
Q800 DMA仪器结构图
试样
加热炉 夹具
低质量高刚性夹具
空气轴承 光学编码器
空气轴承轴
驱动马达
UNIQUE PATENT DESIGN
所有先进的强迫非共振仪都包含有多种形变模式,如 拉伸、压缩、剪切、弯曲(包括三点弯曲、单悬臂梁与 双悬臂梁弯曲)等,有些仪器中还有杆、棒的扭转模式。
在每一种形变模式下,不仅可以在固定频率下测定宽 阔温度范围内的动态力学性能温度谱或在固定温度下 测定宽频率范围内的频率谱,而且还允许多种变量组 合在一起的复杂试验模式。
15
DMA工作原理——强迫非共振法
16
DMA工作原理——强迫非共振法
(1)试样分别与驱动器、应变位移传感器相连接 (2)驱动器将一定频率的正弦交变作用施加到试
样上 (3)由应变位移传感器检测出应变的正弦信号 (4)通过应力振幅与应变振幅的位置比较,得到
应力与应变的相位差 (5)经过仪器的自动处理,得到储能模量E’、损
动态粘弹性就是我们所说的动态力学性能,是我们讨 论的重点。
9
动态力学分析基础
= 0°
动态力学性能测量原理
当材料受到正弦交变应力 作用时,对于理想弹性体, 应变对应力的响应是瞬间 的,因而应变响应是与应 力同相位的正弦函数:ε(t) =ε0 sinωt ;对于理想粘性 体,应变响应滞后于应力 90°相位角;对于粘弹性材 Stress 料,应变将始终滞后于应 力0°-90°的相位角δ。
3
动态力学分析基础
材料的粘弹性
对于粘弹性材料,力学行为既不服从虎克定律,也不 服从牛顿定律,而是介于两者之间。当受到外力时, 粘弹性材料的应变随时间作非线性变化,去除外力, 所产生的形变随时间逐渐且部分回复,其中弹性形变 部分可以回复,黏性形变部分不能回复。外力对粘弹 体所做的功一部分以弹性能的形式储存起来,另一部 分则以热能的形式消耗掉了。同时具有粘性和弹性两 种特性。
动态力学分析(DMA)
动态力学行为是指材料在振动条件下,即在交 变应力(交变应变)作用下做出的力学响应, 即力学性能(模量、内耗)与温度、频率的关系。
测定材料在一定温度范围内动态力学性能的变 化就是动态力学热分析(Dynamic Mechanical Thermal Analysis,简称DMTA)或动态力学分 析( Dynamic Mechanical Analysis,简称 DMA)。
4
动态力学分析基础
粘弹行为-时间依赖性 在短时间(高频率)作用下为类似固体的响应 在长时间(低频率)作用下为类似液体的响应 如果时间足够长任何东西都在流动!
5
“Silly Putty”的固体和液体特性
T is short [< 1s]
T is long [24 hours]
6
动态力学分析基础
Strain
Stress Strain
= 90°
10
动态力学分析基础
动态力学性能测量原理
Phase angle 0°< < 90°
Stress Strain
11
动态力学分析基础
动态力学性能测量原理
储能模量E ' ,表征材料在形变过程中由于弹性形变而 储存的能量:
E' = (stress/strain)cos