当前位置:
文档之家› 第三章-扫描电子显微镜文稿演示
第三章-扫描电子显微镜文稿演示
光栅扫描、逐点成像
光栅扫描:入射电子束在样品表面 上作光栅式逐行扫描,同时,控制 电子束的扫描线圈上的电流与荧光 屏相应偏转线圈上的电流同步。每 一个物点均对应一个像点。
逐点成像:电子束所到之处,每个 物点都会产生相应的信号(如二次 电子等),信号被接收放大后用来 调制像点的亮度,信号越强,像点 越亮。这样,就在荧光屏上得到与 样品上扫描区域相对应但经过高倍 放大的图像,客观地反映样品上的 形貌(或成分)信息。
2.3 各种信号的深度和区域大小
① 入射电子束受到样品原子的散 射作用,偏离原来方向,向外 发散。随着电子束进入样品深 度的不断增加,入射电子的分 布范围不断增大,动能不断降 低,直至动能降为零,最终形 成一个规则的作用区域。
② 对于轻元素样品,电子束散射 区域的外形 ——“梨形作用体 积”;重元素样品——“半球 形作用体积” 。
电子枪 照明透 镜系统
扫描线圈 末级透镜
样品
荧光屏 探测器 至真空泵
3.2 扫描电镜图像的放大倍数
扫描电镜图像的放大倍数定义为显像管中电子束在 荧光屏上的扫描振幅和电子光学系统中电子束在样品上 扫描振幅的比值,即:
M=L/l
式中,M:放大倍数,L:显像管的荧光屏尺寸;l:电子
束在试样上扫描距离。
4. 扫描电子显微镜的构造
背散射电子 探头
末级 透镜
光导管
法拉第网杯 (+200~+500 V) 闪烁体
光电倍增器
三种信号的探测器
X-ray Detector
Back Scatter Electron Detector
4.3 真空系统和电源系统
真空系统的作用是为保证电子光学系统正常工作, 防止样品污染提供高的真空度,一般情况下要求 保持 10-4-10-5 Torr( 10-2-10-3 Pa)的真空度。
2.1 弹性散射和非弹性散射
一束聚焦电子束沿一定方向入射到试样内时,由于晶格 位场和原子库仑场的作用,其入射方向会发生改变的现象称 为散射。
弹性散射: 散射过程中入射电子只改变方向,其总动能基本上无变化。
弹性散射的电子符合布拉格定律,携带有晶体结构、对称性、 取向和样品厚度等信息,在电子显微镜中用于分析材料的结 构。
场发射电子枪
钨灯丝
热阴极电子枪
200 m
3~5kV
六硼化镧灯丝
几十~几百kV
电子束亮度较低; 电子束直径:10 nm 束斑尺寸较大。
4.2 信号收集及显示系统
检测样品在入射电子作用下产生的物理信号,经视频放大作为显 像系统的调制信号。二次电子、背散射电子通常采用闪烁计数器, 由法拉第网杯、闪烁体、光导管和光电倍增器组成。
俄歇电子:入射电子在样品原子激发内层电子后,外层电 子跃迁至内层时,多余能量转移给外层电子,使外层电子 挣脱原子核的束缚,成为俄歇电子。详细的介绍见本书第 三篇第十三章俄歇电子能谱部分。
透射电子 :电子穿透样品的部分。用于透射电镜的明场像 和透射扫描电镜的扫描图像, 以揭示样品内部微观结构的 形貌及物相特征。详细的介绍见本书第二篇第九章电子衍 射和显微技术部分。
非弹性散射: 散射过程中入射电子的方向和动能都发生改变。在非弹性
散射情况下,入射电子会损失一部分能量,并伴有各种信息 的产生。非弹性散射电子,损失了部分能量,方向也有微小 变化。用于电子能量损失谱,提供成分和化学信息。
2.2 SEM中的三种主要信号
二次电子:被入射电子轰击出来的样品中原子的 核外电子(内层电子或价电子)。反映样品表面 的形貌特征,分辨率高。
电子光学系统 信号收集及显示系统 真空系统和电源系统
4.1 电子光学系统
由电子枪,电磁透镜,扫描线圈和样品室等部件组成。 用来获得扫描电子束,作为信号的激发源。扫描电子束应具有较
高的亮度和尽可能小的束斑直径 —— 主要由电子枪决定。
电子枪
第一、二聚光镜 扫描线圈 物镜
样品室
电子枪发展三个阶段
试样制备简单。
配有X射线能谱仪装置,这样可以同时进行显微组织 形貌的观察和微区成分分析。
光学显微 VS 扫描电镜
多孔硅的光学显 微镜图像
多孔硅:可见光发光材料。
多孔硅的扫描 电镜图像
2. 电子束与固体样品作用时产生 的信号(重点)
2.1 弹性散射和非弹性散射 2.2 电子显微镜常用的信号 2.3 各种信号的深度和区域大小
第三章-扫描电子显微镜文稿演示
花蕊的柱头 茉莉花花粉
花粉 菊花花粉
第三章 扫描电子显微镜(SEM)
1. 扫描电镜的优点
2. 电子束与固体样品作用时产生的信号(重点)
3. 扫描电镜的工作原理 (重点)
4. 扫描电镜的构造
5. 扫描电镜衬度像(重点) 8. 应用举例
6. 扫描电镜的主要性能
9. SEM重点内容回顾
7. 样品制备
10. SEM演示录像
1. 扫描电镜的优点
分辨率高:入射电子束束斑直径是扫描电镜分辨率的 极限。场发射电子枪的应用可得到精确聚焦的电子束, 现代先进的扫描电镜的分辨率已经达到1 nm左右。
放大倍数高:20-20万倍之间连续可调。
景深大:视野大,成像富有立体感,可直接观察各种 试样凹凸不平表面的细微结构。比光学显微镜大几百 倍。
梨形作用体积
2.3 各种信号的深度和区域大小
③ 改变电子能量只引起 作用体积大小的变化, 而不会显著的改变形 状。
电子束能量与作用体积的关系
2.3 各种信号的深度和区域大小
有效作用区:可以产生信号的区域。 电子有效作用深度:有效作用区的最深处。 有效作用区内的信号并不一定都能逸出材料表面、成为有效
的可供采集的信号。 随着信号的有效作用深度增加,作用区范围增加,信号产生
的空间范围也增加,信号的空间分辨率降低。
入射电子束
俄歇电子(0.4~2 nm) 二次电子 (5~10 nm) 背散射电子(100 nm~1 m)
特征X射线 连续X射线
SEM的分辨率指的是二次 电子的分辨率。
3.1 扫描电镜的工作原理(重点)
背散射电子:被固体样品原子反射回来的一部分 入射电子,包括弹性背散射电子和非弹性背散射 电子。形貌特征及定性成分分析。
特征X射线:入射电子激发原子内层电子后,外层 电子跃迁至内层时发出的光子。定量成分分析。
三种主要信号的产生过程
弹性背散 射电子
入射电子
非弹性背 散射电子
特征X射线
二次电子
其他信号