一.总体参数设计总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。
1. 额定功率、设计寿命根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。
2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸(1) 风轮直径和扫掠面积由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.135000008833213≈⨯⨯⨯⨯⨯⨯⨯==πηηηπρ 其中:P r ——风力发电机组额定输出功率,取3.5MW ;错误!未找到引用源。
——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径;1η——传动系统效率,取0.95;2η——发电机效率,取0.96;错误!未找到引用源。
3η——变流器效率,取0.95;由直径计算可得扫掠面积:222848241044m D A =⨯==ππ错误!未找到引用源。
错误!未找到引用源。
综上可得风轮直径D=104m ,扫掠面积A=84822m4. 功率曲线自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。
由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示:)()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定;)(t P stat ——在给定时间段内V(t)的平均值所对应的功率;)(△t P ——表示t 时刻由于风湍流引起的功率波动。
对功率曲线的绘制, 主要在于对风速模型的处理。
若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式:3212381ηηπηρD V C P r P =1η——传动系统效率,取0.95;2η——发电机效率,取0.96;错误!未找到引用源。
3η——变流器效率,取0.95;错误!未找到引用源。
——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径;由以上公式,使用excel计算出不同风速对应的功率值,见表1表1 风速功率关系将得到的数据对绘制成静态风功率曲线,如图一图1 P—v静态功率曲线5.风轮额定转速三叶片风力发电机组的风轮叶尖速比λ一般在6至8之间,不同攻角下的风能利用系数随叶尖速比的变化曲线即C Pλ曲线如图。
图C P0λ曲线由C p0λ曲线可得出0λ =7.5,则风轮额定转速可由下式计算得到:min/5.16104125.76060300r D V n V Rn r r rr=⨯⨯⨯=⨯⨯⨯=∴=ππλπλΘ6. 叶片数现代风力发电机的实度比较小,一般需要1-3个叶片。
选择风轮叶片数时考虑风电机组性能和载荷、风轮和传动成本、风力机气动噪声及景观影响等因素。
3叶片较1、2叶片风轮有如下优点:● 平衡简单、动态载荷小。
基本消除了系统的周期载荷,输出较稳定转矩; ● 能提供较佳的效率; ● 更加美观; ● 噪声较小; ● 轮毂较简单等。
综上所述,叶片数选择3。
7、功率控制方式、制动系统形式功率控制方式选择主动变桨距控制;制动系统形式为第一制动采用气动刹车,第二制动采用高速轴机械刹车。
8、风力机等级由IEC标准,如表2,选择风力机等级为IECIIIA。
表2 风机等级规范表注:表中数据为轮毂高度处值,其中:A 表示较高湍流特性级;参考风速Vref 为10min 平均风速; B 表示中等湍流特性级;I 15风速为15m/s 时的湍流强度特性值。
C 表示较低湍流特性级;除表基本参数外,在风力发电机组设计中,还需要某些更重要的参数来规定外部条件。
对风力发电机组IA~IIIC 级,统称为风力发电机组的标准等级。
阶段性总结表二.叶片设计1.叶片材料选择叶片选用T-700碳纤维,相比玻璃纤维,叶片密度较小,发电效率更高,密度为3/1800mkg。
2.计算各剖面的叶尖速比将叶片分为20个叶素,每个叶素间隔0.05R,其中5%半径处叶片是筒状,10%-60%半径处采用钝后缘叶片,65%-100%半径处采用通用风电机组叶片翼型。
叶片内圈采用钝后缘翼型,外圈采用63415翼型。
根据下式求各叶素的叶尖速比λ。
0r Rλλ=叶素位置和叶尖速比数值见下表2:表2 不同叶素位置的叶尖速比叶尖速比叶尖速比3.根据翼型确定叶片最佳攻角α,升力系数C l,C d风力机翼型为NACA63-415,图3图3 NACA63-415翼型图计算雷诺数Re在20℃,压强为标准大气压101.325kPa 时,空气的动力粘度6109.17-⨯=μ 761028.6109.175212225.1⨯=⨯⨯⨯==-μρi e VL R 根据所得雷诺数查得Cl/Cd 、Cl/alpha ,见图4图4 C l -C d 曲线 和C l -alpha 曲线图5 C l/C d ——alpha 图从图中可以得出翼型取得最大升阻比时,最佳攻角ο25.5=α,此时升力系数C l =0.9461,C d =0.00791,最佳升阻比7.118/=d l C C ,本次设计选取最佳攻角ο25.5=α错误!未找到引用源。
,则升力系数和阻力系数分别为C l =0.9461,C d =0.00791。
叶片每个截面的升力系数相同,为C l =0.9461。
4. 叶片弦长计算步骤通过下面的计算,可以得到沿叶片各径向位置r 上的弦长C 和叶素桨距角β,即可完成叶片的初步设计,但要是想对叶片进一步优化,还需对翼型、叶根、叶尖风进行气动优化设计和工艺优化设计,在本次设计报告中,只对叶片作了初步设计。
如下: (1)求ψ利用公式3arctan 31πλ+=ψ(2)求轴向干扰因子k 利用公式ψ+=cos 12λk(3)求切向干扰因子h 利用公式λ2211k h -+=(4)求入流角φ利用公式)11cot(k harc ++=λφ(5)求叶素桨距角βαφβ-=(6)计算叶片弦长C)1(cos )1(8+-=h BC h r C l φπ叶片气动特性通过excel 计算,得到叶片各个截面气动特性参数,如表3:表3 叶片气动特性参数5.叶片根部载荷计算与材料选择叶片根部处理方式:距叶根0 ~ 5m处制作成直径为3m的圆柱结构处理,且根部采用金属法兰连接。
见图 6图6 金属法兰连接表4 增强材料力学性能根据表4 材料选择为T700碳纤维,抗拉强度为4.9Gpa∴ 取[]pa pa 991047.1109.43.0⨯=⨯⨯=σ ∴ m M r T d m 07.1)96.01(1047.13018600)912.34663860(32)1()(32349223422min =-⋅⋅⨯+⨯⋅=-⋅⋅+⋅⋅=παπσ取min 1555.311.72121d m c d ≥=⨯==所以风轮根部直径选择3.6m三. 确定主要部件1.发电机发电机类型:双馈异步变速恒频发电机;额定功率:3.5MW;额定转速:1500r/min;发电机极对数为2,发电机主轴转矩T发电机主轴为:m N n P T r ⋅⨯=⨯⨯⨯==43210443.295.096.01500350095509550ηη发电机主轴选择刚轴推荐最大扭剪应力:MPa f s 55=则发电机的主轴直径D 发电机为:m f T D s1313.0105.510443.222237432=⨯⨯⨯⨯⨯==ππ发电机主轴发电机 取发电机主轴直径D 为0.15m. 2.变流器变流器功率通常为风力发电机组的1/2~1/3,为保证机组可靠性,通常为额定功率的1/2,所以变流器功率为1500kW 。
3.齿轮箱方式:行星齿轮传动两级NGW ; 低速轴转速:l n =16.5r/min 高速轴转速:h n =1500r/min 传动比:i = 90齿轮箱效率:983.095.0331===ηη 齿轮箱功率:W P P rGB 633121109.395.096.095.03500000⨯≈⨯⨯==ηηη4.联轴器低速轴联轴器功率W P P rm 62232109.3395.096.035000003195.0⨯≈⨯⨯==ηηη 错误!未找到引用源。
高速轴联轴器功率:W P P r t6321084.395.096.03500000⨯≈⨯==ηη 5.主轴低速轴角速度为:s rad nm /727.1605.1626021=⨯⨯==ππω 高速轴角速度为:s rad n h t /1576015002602=⨯⨯==ππω低速轴功率为:W P P rm 62232109.3395.096.035000003195.0⨯≈⨯⨯==ηηη高速轴功率为:W P P r t6321084.395.096.03500000⨯≈⨯==ηη低速轴转矩为:m N m mP T ⋅≈==3.2258251727.13900000m ω 高速轴转矩为:m N tt P T ⋅≈==6.244581573840000t ω低速轴直径:m fT D smL 59.0550000003.2258251222233≈⨯⨯⨯==ππ高速轴直径:m f T D stH 1314.0105.510445.222237432=⨯⨯⨯⨯⨯==ππ综上可得,低速轴直径取0.7m ,高速轴直径取0.18m 。
6.偏航系统类型:主动偏航,并选用强制外置6电机偏航; 偏航范围:o 800-——o 800+ 偏航角速度:s o /6.0 偏航轴承:4点接触球轴承; 偏航驱动:6个3kW 偏航电机; 偏航制动:液压控制摩擦制动; 大齿轮齿数:135;小齿轮齿数:16 减速箱传动比:i=140 结构简图见 图7图7 偏航机构结构简图7.变桨系统根据调整桨距角调整风能利用系数,桨距角与风能利用系数曲线见图8图8 风能利用系数与桨距角关系曲线变桨类型:3叶片独立变桨控制,采用电动驱动装置。
供电方式:超级电容供电发电机转速:永磁电动机1500r/min,电机功率:3⨯10kw变桨范围:0—90o(主要变桨范围0—30o)变桨速度:7o/s传动方式:齿形带传动变桨机构结构图见图9图9 变桨机构结四.风机载荷计算1.叶片载荷计算(1)作用在叶片上的离心力F c叶片绕风轮旋转时,有离心力作用在叶片上。