当前位置:文档之家› 钢筋加工场门吊基础设计计算

钢筋加工场门吊基础设计计算

××铁路××段站前三标××钢筋加工场门吊基础计算书审核:复核:编制:编制日期:目录1 门吊基础设计方案 (1)2 门吊基础验算 (1)2.1 基底地质情况 (1)2.2 基础力计算 (2)2.3 基础梁配筋计算 (3)2.4 地基承载力 (6)3 结论 (7)1 门吊基础设计方案该门吊为起吊能力10t 的门吊,门吊自重按 t 。

基础采用条形基础,长 m ,宽1.0m ,高0.8m ,基础采用C20砼,纵向受力钢筋采用HPB235φ16mm 光圆钢筋,箍筋采用HPB235φ10mm 光圆钢筋,箍筋间距200mm ,基础每10m 设一道2cm 宽沉降缝,基础方案立面图、侧面图如图1-3,1-4所示。

2 门吊基础验算2.1 基底地质情况基底为较软弱的粉质粘土,采用换填土的办法提高地基承载力,基底换填0.5m 厚的碎石土,未压实,按松散考虑,地基基本承载力σ0为200~400kPa ,取200kPa 。

查《路桥施工计算手册》中碎石土的变形模量E 0=29~65MPa ,取变形模图1-1 门吊立面图图1-2 门吊侧面图 图1-3 门吊基础立面图图1-4 门吊基础侧面图量29MPa 。

2.2 基础力计算基础力计算按弹性地基梁计算,采用Midas civil 2006 模拟弹性地基梁计算。

即把基础梁和地基一同考虑计算,土看成基础梁的弹性支撑,弹性支撑刚度 SDz=m kN h s E /106.38.011010002950×=×××=• 龙门吊自重按14t 计算,总重24t ,四个受力点,单个点受力6t ,看成集中力,基础梁按一段10m 长计算,受力计算图式如图2-1所示采用midas 建模计算,计算模型如图2-2所示计算结果如图2-3、2-4所示图2-1 基础受力计算模型 图2-2 midas 计算模型图2-3 弯矩图图2-4 剪力图变形形状如图2-5所示图2-4 变形形状根据计算结果可知:基础梁最大弯矩26.9k N·m,最大剪力37.4kN。

2.3 基础梁配筋计算配筋根据《公路钢筋砼和预应力砼设计规》(JTG D62-2004)中的相关公式进行计算。

1)配筋如图2-5所示2)配筋正截面抗弯复核等效成矩形断面计算,等效高h=800-65=735mm拉压区强度MPa f f sdsd 195'==,拉压区受力钢筋截面面积 2'4022201mm A A s S =×==,as=50mm ,as ’=65mm ,b=1000mm ,h 0=h-as=735-50=685mm求受压区高度x0-''=•••=bf A f A f x cd s sd S sd x <2as’故,抗弯承载力Mu=fsd·As (h 0-as’)=195×402×(685-65)=48.6kN·m >γ0·Md=1.2×26.9=32.3kN·m,故满足正截面抗弯承载力要求。

3)配筋斜截面抗剪复核抗剪最大承载力按下列公式计算。

图2-5 配筋图sv sv k cu 03-321f f p 6.02bh )1045.0(ααρα,)(+ו•=u V其中:1α——异号弯矩影响系数,按连续梁取值,为0.92α——预应力提高系数,无预应力故取1.03α——受压翼缘影响系数,取1.1b ——截面宽度(mm ),为1000mmh 0——斜截面受压区顶端正截面的有效高度(mm ),为685mmp ——斜截面纵向受拉钢筋的配筋率,p=100ρ,ρ=As/bh 0ρ=402/(1000×685)=0.06%,故p=0.06fcuk ——砼立方体抗压强度标准值(MPa ),C20砼,为20 MPaρsv ——箍筋配筋率,ρsv =%08.020010005.782=××=•v SV S b A fsv ——箍筋强度,采用双肢箍筋φ10mmR235钢筋,fsv=195MPa代入得到:kN V u 0.3151950.06%200.066.026851000)1045.0(1.11.00.93-=×××+×××××××=)(>γ0·Vd=1.2×37.4kN=44.9kN,故满足斜截面抗剪要求。

4)砼强度复核钢筋弹性模量Es=2.1×105MPa ,C20砼弹性模量Ec=2.55×104MPa 钢筋砼截面换算系数23.81055.2101.2α45=××==Ec Es Es 将拉区钢筋换算成砼后受压区高度xmm A bh b A X S Es S Es 1.64]14028.23685100021[10004028.23]1α21[α0=×××+××=+=-- 换算截面惯性矩49232031036.11.6468540223.81.64100031)(α31mm h A bx I S Es cr =)-(+=-x×××××+= 压区砼应力=×××==961036.11.64105.26σcr c I Mx 1.5MPa<0.80fck=0.80×13.4=10.72MPa 故砼强度满足要求。

5)钢筋强度复核=××××=•=9601036.11.64685109.2623.8)(ασ)-(-xcr i Es s I h M 19.7MPa <0.75fsk=0.75×235=176.25MPa故钢筋强度满足要求。

6)板最大裂缝复核)1028.030(321ρσ++=d E c c c W S ss fk 其中:1c ——考虑钢筋表面形状系数,光圆钢筋取1.42c ——考虑荷载作用系数,荷载长期或重复作用取1.53c ——考虑构件受力特征系数,板式受弯构件取1.0d ——纵向钢筋直径,为16mmρ——截面配筋率,为0.06%<0.006,取0.006代入公式可得:)006.01028.01630(101.27.190.15.14.1)ρ1028.030(σ5321×++×××××=++=d E c c c W S ss fk =0.03mm<0.2mm ,故裂缝宽度满足要求。

综合上面的计算可知,基础梁的尺寸和配筋满足受力要求。

2.4 地基承载力根据力计算同时得到地基反力,如图2-6所示,单个弹簧支座最大反力19.6kN ,单个弹簧支座作用面积长按0.5m ,宽1m 计算,基底应力:σ==×=0.15.06.19A F 39.2kPa <σ0=200MPa ,故地基承载力满足要求。

图2-6 弹簧支座反力3 结论门吊基础尺寸和配筋满足各项受力要求,基础承载承载力不宜小于50kPA;,同时应尽量保证地基换填后较密实,提高承载力,减少地基沉降。

保证门吊安全、稳定的工作。

轨道安装在基础梁上应牢固准确,防止门吊脱轨。

附录:外文翻译In Wang Zuoliang’s translation practices, he translated many poems, especially the poems written by Robert Burns. His translation of Burn’s “A Red, Red Rose” brought him fame as a verse translator. At the same time, he published about ten papers on the translation of poems.Some argue that poems cannot be translated. Frost stresses that poetry might get lost in translation. Accordin g to Wang, verse translation is possible and necessary, for “The poet-translator brings over some exciting work from another culture and in doing so is also writing his own best work, thereby adding something to his culture. In this transmission and exchange, a richer, more colorful world emerges. ”(Wang, 1991:112).Then how can we translate poems? According to Wang’s understanding, the translation of poems is related to three aspects: A poem’s meaning, poetic art and language.(1)A poem’s meaning“Socio-cultural differences are formidable enough, but the matter is made much more complex when one realizes that meaning does not consist in the meaning of words only, but also in syntactical structures, speech rhythms, levels of style.” (Wang, 1991:93).(2)Poetic artAccording to Wang, “Bly’s point about the ‘marvelous translation’ being made possible in the United States only after Whitman, Pound and Williams Carlos Williams composed poetry in speech rhythms shows what may be gained when there is a genuine revolution in poetic art.” (Wang, 1991:93).(3)Language“Sometimes language stays static and sometimes language stays active. When language isactive, it is beneficial to translation”“This would require this kind of intimate understanding, o n the part of the translator, of its genius, its idiosyncrasies, its past and present, what it can do and what it choose not to do.” (Wang, 1991:94).Wang expresses the difficulties of verse translation. Frost’s comment is sufficient to prove the difficulty a translator has to grapple with. Maybe among literary translations, the translation of poems is the most difficult thing. Poems are the crystallization of wisdom. The difficulties of poetic comprehension lie not only in lines, but also in structure, such as cadence, rhyme, metre, rhythm, all these conveying information. One point merits our attention. Wang not only talks about the times’ poetic art, but also the impact language’s activity has produced on translation. In times when the language is active, translation is prospering. The reform of poetic art has improved the translation quality of poems. For example, around May Fourth Movement, Baihua replaced classical style of writing, so the translation achieved earth-shaking success. The relation between the state of language and translation is so。

相关主题