当前位置:文档之家› 智能控制导论论文(人工神经网络)

智能控制导论论文(人工神经网络)

智能控制导论论文●系别:●班级:●学号:●姓名:●日期:人工神经网络关键词:人工神经网络、产生、发展、应用内容摘要:人工神经网络是二十世纪科学技术所取得的重大成果之一,是人类认识自然道路上的又一座里程碑。

90年代以来,国际学术界掀起了研究人工神经网络的热潮,但是探讨其哲学思想方面的研究相对薄弱。

我们知道,任何一门影响巨大、意义深远的科学技术,其发展过程必然揭示了科学技术发展的基本规律以及影响其发展的主要因素。

人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。

同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。

人工神经网络产生的背景自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。

生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。

在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。

另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。

然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。

复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。

为了更好地认识客观世界,我们必须对非线性科学进行研究。

人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。

所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。

发展历史人工神经网络的研究始于20世纪40年代,至今已有60多年的历史,其发展很不平衡,既有其繁花似锦、兴旺昌盛的高速发展期,又有其困难重重、步履维艰的低潮期,甚至曾经有人对此理论持悲观态度,认为该理论“已走入死胡同,无发展的余地”。

1943年W.McCulloch和W.Pitts基于生物神经元的构造,提出了模拟神经元功能的兴奋与抑制型神经元模型,称为MP模型,开创了人工神经网络研究的时代。

1958年P.Rosenblatt首次引进了模拟人脑感知和学习能力的感知器(perceptron)概念,首次把神经网络的研究付诸实践。

感知器通过训练可以作为一些模式的分类器。

尽管感知器模型比较简单,但已经具备了人丁神经网络的一些基本特征,如学习功能、分布式存储和并行处理功能等,成为后来所发展的一大类神经网络模型的基础。

1961年Caianiello发表了关于神经网络数学的理论著作,提出了神经元网络方程,将神经元作为双态器件,对其机能的动力过程用布尔代数加以模拟,进而分析和研究了细胞有限自动机的理论模型。

1962年n.Widrow和M.Hoff 提出了一种连续取值的线性加权求和阈值网络,即自适应线性神经元ADALINE(adaptivelinearneuron),具有自适应学习功能,后来ADALINE又扩展为多自适应线性神经元MADALINE(many ADALINE),在信号处理、模式识别等方面受到普遍重视和应用。

B.Widrow和M.Hoff在神经网络理论上提出了Widrow—Hoff学习规则。

1969年M.Minsky和S.Papert出版了((perceptron》一书,指出了双层感知器模型的局限性,此后一段时间内人工神经网络的研究处于低潮。

在这一低潮期,人工神经网络理论仍取得了一定的进展,如1969年S,Grossberg和Carpenter 提出的白适应共振理论,1972年T.Kohonen提出的自组织映射理论和“联想存储器”模型,J.Anderson提出的“交互存储器”模型等。

进人20世纪80年代后,传统的数字计算机在模拟视、听觉的人工智能方面遇到了物理上不可逾越的极限。

1982年J.Hopfield提出了Hopfield神经网络(HNN)模型,引入了能量函数的概念,给出了网络稳定性的判据。

此后,他又提出了连续时间HNN模型,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络研究的发展,掀起了第二次研究热潮。

1983年G.Sejnowski与T.Hinton提出了大规模并行网络(massively parallcl)学习机,其学习过程采用模拟退火技术,有效地克服了Hopfield网络存在的能量局部极小问题;同时明确提出了隐单元的概念,这种学习机后来称为Boltzmann机。

1986年以D.E.Rumelhart和J.L.Mcclelland为首的PDP研究小组提出厂多层前馈型网络权重调整的误差反向传播(back-propagation,BP)算法,从而实现了多层网络的设想,把人工神经网络的研究进一步推向深入。

这种基于BP 算法的前馈型网络·般称为BP网络,是目前应用最为广泛的神经网络模型之一。

此后,人工神经网络的理论与应用领域发展迅速。

目前人工神经网络在研究方法上已经形成了很多流派,包括多层网络BP算法、Hopfield网络模型、自适应共振理论(ART)、自组织特征映射理论等。

人工神经网络作为一种新方法,在自然科学与社会科学的众多领域得到了广泛应用,取得了扩硕的成果,同时也促进了理论研究的发展。

基本内容人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。

目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。

网络结构简单,易于实现。

反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。

这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。

系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。

根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。

Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。

使用监督学习的神经网络模型有反传网络、感知器等。

非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。

非监督学习最简单的例子是Hebb 学习规则。

竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。

混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。

混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为人工神经网络发展前景针对神经网络存在的问题和社会需求,今后发展的主要方向可分为理论研究和应用研究两个方面。

(1)利用神经生理与认识科学研究大脑思维及智能的机理、计算理论,带着问题研究理论。

人工神经网络提供了一种揭示智能和了解人脑工作方式的合理途径,但是由于人类起初对神经系统了解非常有限,对于自身脑结构及其活动机理的认识还十分肤浅,并且带有某种“先验”。

例如, Boltzmann机引入随机扰动来避免局部极小,有其卓越之处,然而缺乏必要的脑生理学基础,毫无疑问,人工神经网络的完善与发展要结合神经科学的研究。

而且,神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论。

相关主题