高炉炼铁仿真操作系统实训指导书绪论高炉炼铁仿真操作系统功能实训项目实训目标实训项目1 高炉炼铁工艺流程实训任务按照要求熟练打开仿真操作系统的操作界面任务熟练说出高炉炼铁车间构筑物的名称及作用任务熟练说出高炉炼铁车间主要设备的名称及作用知识链接高炉内型尺寸实训项目2 高炉上料实训仿真实训条件:(一)高炉槽下筛分、称量、运输系统的组成高炉槽下系统由矿槽、焦槽以及皮带机三部分组成,矿槽采用双排,设有大小矿槽12个,大矿槽测为6个烧结矿槽,小矿槽侧由2个普通球团矿槽、2个块矿槽、2个熔剂或锰矿槽构成设有5个焦槽,各矿槽下均设给料机、振动筛、称量漏斗等设备。
配置一个矿石中间称量漏斗与一个焦炭中间称量漏斗,矿焦通过中间称量漏斗、经皮带上炉顶。
同时拥有小块焦回收系统,1A-6A按烧结矿考虑,1B-6B按球团矿、锰矿熔剂、生矿考虑。
4.1.1 各高炉矿槽、焦槽配备(见表4—1)表4—1 各高炉矿槽配备情况项目炉别矿槽数(个)焦槽数(个)烧结矿槽球团矿槽块矿槽焦丁槽1、2号高炉6×m3 2×m3 2×m31×m3 4×m3储存时间(h):焦炭:8h;烧结矿:12h;球团矿:12h;碎焦:8h;碎矿:8h。
槽下筛分、秤量设备(见表4—2,表4—3)表4—2 筛分设备表4—3 秤量类别规格焦炭筛烧结矿筛类别名称矿焦型式BTS-150-330 BTS-150-330 称量物烧结矿球团矿块矿焦炭能力(t/h) 200 250筛面尺寸(mm)筛分效率秤容积(m3)装料制度OC或C OL(大粒度矿)、OS(小粒度矿)(二)主要控制功能矿焦槽所有入炉原料采用分散筛分、分散称量+集中称量流程。
按预先设定的排料程序,将筛分合格后的入炉原料依次给入中间漏斗称量后,再依次排放到相应的胶带机。
槽下设有排料程序控制,根据物料组成与上料要求任意选择,一般情况下焦炭可以选择3-4个称量漏斗同时工作,烧结矿可以每次选择3-4个称量漏斗,杂矿可以选择3-4个称量漏斗进行不同形式的组合供料。
知识链接:原燃料供给与控制1) 分配原则:炉况处于非正常状况的高炉,在恢复阶段供给理化性能好的原、燃料。
2) 原燃料使用技术要求(1) 矿槽使用由高炉提出,主管副作业长(或生产技术室主任)批准。
(2) 矿槽漏嘴必须轮流使用,漏嘴堵塞或故障不能漏料时必须及时处理。
(3) 高炉工长按用料规定配料,计算后写料单。
(4) 上料PLC的控制程序,必须确保按料单准确漏料,秤量误差规定如下:矿石<%,焦炭%~%;与此同时,必须保证重量补偿功能工作正常。
(5) 临时调剂变料,在5批之内可不用变料通知单,超过时则必须发变料通知单并输入微机内,停止时及时消除。
(6) 秤量校对:每班核对一次焦炭秤、矿石秤的零点。
3) 合理炉料结构高炉冶炼用的原料主要有:烧结矿、球团矿和块矿,使用时必须合理搭配,最佳方案是:高碱度烧结矿(R=~),配低碱度球团或块矿(硅石可用以临时调碱度)特殊情况也可以按下列要求配料:以块矿为主搭配高碱度烧结矿时,可用石灰石调碱度。
灰石必须装在每批料的中间或一车料的上边,把灰石分布到高炉中心。
准确、及时,为高炉上好每一批精料,全心全意为高炉服务。
二. 目标1、入炉粉末率≤4%2、影响高炉上料为03、原燃料数据准确率为100%4、设备点巡检,润滑率为100%5、安全事故为06、设备事故为0环形布料;工作特点是倾角固定的旋转运动。
(2)定点布料;工作特点是方位角固定的布料。
(3)螺旋布料;工作特点是倾角变化的旋转布料,倾角变化分为倾角渐变的螺旋形布料和倾角跳变的同心圆布料(4)扇形布料,工作特点是方位角在规定的范围反复变化。
4 原、燃料供料系统的主要设备4.1.1 各高炉矿槽、焦槽配备(见表4—1)表4—1 各高炉矿槽配备情况项目炉别矿槽数(个)焦槽数(个)烧结矿槽球团矿槽块矿槽焦丁槽1、2号高炉6×m3 2×m3 2×m31×m3 4×m3储存时间(h):焦炭:8h;烧结矿:12h;球团矿:12h;碎焦:8h;碎矿:8h。
槽下筛分、秤量设备(见表4—2,表4—3)表4—2 筛分设备表4—3 秤量类别规格焦炭筛烧结矿筛类别名称矿焦型式BTS-150-330 BTS-150-330 称量物烧结矿球团矿块矿焦炭能力(t/h) 200 250筛面尺寸(mm)筛分效率秤容积(m3)各高炉内型尺寸炉别项目 1# 、2#有效容积Vu m3 766炉缸直径d mm ∮6800炉腰直径D mm ∮7800炉喉直径d1 mm ∮5300死铁层高ho mm 1600风口中心高Hf mm 3300炉缸高h1 mm 3800炉腹高h2 mm 2800炉腰高h3 mm 1900炉身高h4 mm 10900炉喉高h5 mm 2200有效高hu mm 21600炉腹角α79°15ˊ40″炉身角β83°43ˊ03″炉缸断面积A m2炉腰断面积B m2炉喉断面积C m2Vu/AHu/D炉缸容积V1 m3炉腹容积V2 m3炉腰容积V3 m3炉身容积V4 m3炉喉容积V5 m3工作容积 Vg m3 646风口数目个 18风口间距mm5.1.2高炉冷却结构(见表5—2)表5—2 各高炉冷却壁段数冷却壁型炉别光面段带凸台段炉底冷却形式1# 、2# 1~7段(120 mm) 8~13段(捣打SiC捣料)∮76×12mm 水冷5.1.3 高炉主要阀门直径(见表5—3)表5—3 各高炉主要阀门直径阀门(mm)炉别1# 2#炉顶放散阀∮650×2均压阀∮200×2均压∮ 300放散阀∮ 1890煤气切断阀∮1200放风阀∮×1调节阀组∮×3高炉工艺参数5.2.1 鼓风工艺参数(见表5—4)表5—4 鼓风工艺参数项目炉别冶炼强度~(t/)标准风速140~180(m/s)鼓风动能104(Mpa/GJ)炉项压力~(MPa)压差~(Mpa)5.2.2 炉渣化学成份(见表5—5)表5—5 炉渣的化学成份炉渣的化学成分 (%)铁种CaO SiO2 MgO AI2O3 FeO 碱度炼钢铁40~42 37~39 ~~<±铸造铁 40~41 39~40 ~~<~5.2.3 高炉各部位水温差控制范围见(表5—6)表5—6 高炉各部位水温差控制范围部位炉缸炉腰炉身下部炉身中部1~2段3~5段水温差范围(℃)<3 <4 6~8 8~10 10~12热流强度(KJ/) 34000 37000 35000 ~生铁含硅量与铁水温度 (见表5—7)表5—7 生铁含硅量和铁水温度炉别生铁含硅[Si]% 标准偏差(σsi)铁水温度(℃)1#、2# —≤ 1400~14505.2.5各高炉冷却水水压规定值(见表5—14)表5—14 各高炉水压规定数值部位炉别炉缸(Mpa) 风口(Mpa) 平台(Mpa) 中部(Mpa) 上部 (Mpa)1#、2#注:对冷却水质的要求(1)PH值:6~8;(2)悬浮物:小于200mg/L;(3)固形物:小于500mg/L;(4)进水温度:20℃~30℃,最高温度不超过35℃。
高炉基本操作制度:送风制度是根据冶炼条件选择适宜的风口直径和长度、调整风量、维持较高的风速和动能,以达到风口活跃和炉缸工作均匀。
鼓风参数控制见表5—4。
1) 风口面积的选择在一定的原燃料条件和冶炼强度下,要求有一个合适的风口面积。
在生产条件变化较大时,风口面积要相应地调整,特别是炉缸工作变差,上部调剂无效时,要果断地调整风口面积和分布。
(1) 有计划地改变冶炼强度、炉顶压力和喷吹数量时,要相应地扩大或缩小风口面积;(2) 冬季冷风温度降低、原燃料质量恶化、渣铁运输困难不能保证按时放渣、出铁时,可根据情况适当缩小风口;(3) 炉况异常、炉缸不活跃、吹不进风、在上部调剂效果不明显时要及时缩小风口(或堵风口);(4) 开炉和长期休风后的复风,为保证送风后炉况稳定和安全出铁,需临时堵部分风口;2) 风量与风压风量是强化高炉冶炼最积极的因素。
在炉况稳定顺行的条件下,增加风量有利于提高冶炼强度、活跃炉缸。
高炉必须根据原燃料的实际条件(也就是透气性的好坏)确定本炉正常生产时压差和对称的风压与风量。
3) 热风温度风温是鼓风的质量标志。
鼓风带入的热量是高炉主要热源之一。
提高风温有利于活跃炉缸、提高喷吹物数量,降低焦比。
因此,在喷吹煤粉的条件下,热风温度应保持最高水平,正常生产时不能将风温做为调剂手段。
必须时,应遵循下列原则。
降风温时,一次降到所需水平,一般不超过正常风温15%。
恢复时视炉温和炉况接受程度逐步提高至所需水平,其升温速度可控制在每小时50~100℃的水平,每次不大于30℃。
热风炉换炉时,风温波动应小于20℃。
4) 喷吹煤粉高炉喷吹煤粉不仅可以代替焦炭,而且有利于炉况稳定顺行。
在不富氧的条件下,一般喷吹120~150千克/吨铁。
富氧2~3%可喷吹150~180kg/t铁。
喷吹煤粉力求广喷、匀喷,促进炉缸圆周工作均匀。
做为热源调剂时注意其同焦炭的置换比换算和热滞后性。
5) 富氧富氧可提高冶炼强度,提高理论燃烧温度,有利于煤粉的充分燃烧,从而提高喷吹量和置换比。
1%的富氧相当于增加%的风量。
富氧同高风温、大喷吹量同时使用时,节焦增产效果更显著。
现有原料条件下经济富氧率<4%。
5.3.2.3 造渣制度1) 技术要求:(1) 具有良好的稳定性和流动性;(2) 具有足够的脱硫能力;(3) 有利于获得稳定充沛的炉温;(4) 有利于维护高炉内型剖面的规整;(5) 根据生产需要,有利于形成较为稳定的渣皮并有利于消除炉缸堆积物和附着物。
2) 渣碱度及化学成份(见表5—5)(1) 炉渣碱度应保持在~范围内;(2) 炉况不顺时,可相应选下限碱度;(3) 冶炼中锰制钢铁时,碱度可选中下限;(4) 硫负荷升高至5kg/t·Fe时,应选中上限;(5) 炉缸水温差升高、炉身下部及以下部位炉皮破损、冷却壁损坏严重时,可选中上限碱度;(6)选择碱度时必须注意同炉温的对称、匹配,不允许长期低碱度、低炉温操作,更不允许高碱度、低炉温操作。
3)熔剂调节(1) 调节炉渣碱度以终渣碱度为依据;(2) 正常情况调节石灰石量一次以30kg为宜,最多不超过60kg。
炉凉出黑石头渣时要果断调整碱度,按规定炉渣碱度的下限操作。
4) 洗炉洗炉方法分为化学洗炉和物理洗炉两种方法。
提高炉温降低碱度是任何方法的必备条件。
(1) 物理洗炉方法边缘布焦,发展边缘气流,利用煤气流冲刷粘结物,采用此措施时,需要减轻负荷15%~18%。
这种方法对风口区以上较为有效。
净焦洗炉连续不许超过15批(此法处理高炉下部粘结或堆积物)。