当前位置:文档之家› 南昌大学电力电子技术实验报告(打印上交)汇总

南昌大学电力电子技术实验报告(打印上交)汇总

电力电子技术实验报告学生姓名:学号:学院名称:专业班级:目录实验一锯齿波同步移相触发电路实验 (1)实验二正弦波同步移相触发电路实验 (4)实验三单相桥式全控整流电路实验 (7)实验四单相桥式半控整流电路实验 (11)实验五三相桥式全控整流及有源逆变电路实验 (16)实验六直流斩波电路实验 (19)实验七三相半波可控整流电路的研究 (21)实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

二.实验内容1.锯齿波同步触发电路的调试。

2.锯齿波同步触发电路各点波形观察,分析。

三.实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。

四.实验设备及仪器1.NMCL系列教学实验台主控制屏2.NMCL-32组件和SMCL-组件3.NMCL-05组件4.双踪示波器5.万用表五.实验方法图1-1 锯齿波同步移相触发电路1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。

2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。

3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。

用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。

同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

4.调节脉冲移相范围将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压Ub(即调RP2),使α=180˚。

调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180˚,Uct=Umax时,α=30˚,以满足移相范围α=30˚~180˚的要求。

5.调节Uct,使α=60˚,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

六.实验报告1.整理,描绘实验中记录的各点波形。

答:示波器波形见附录。

2.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?答:调节电位器Rp2,改变偏移电压Ub,从而改变移相范围;移相与电位器Rp1、Vct的大小等参数有关。

3.如果要求Uct=0时,α=90˚,应如何调整?答:将SMCL-01的Ug输出电压调至0V,即将控制电压Uct调至0。

用示波器观察1孔电压及U5的波形。

调节偏移电压Ub,即调节Rp2,使α=90°。

4.讨论分析其它实验现象。

答:实验中一时无法观察到Ug1k1和Ug3k3的波形,后来发现由于脉冲Ug1k1和Ug3k3输出端有电容影响。

所以观察输出脉冲电压波形时,需要将输出端Ug1k1和Ug3k3分别接到晶闸管的门极和阴极,才能观察到正确的脉冲波形。

5. 写出实验心得体会。

第一次做电力电子实验时我对实验设备还不太熟悉,有些手忙脚乱,而这次实验让我对电力电子技术实验设备有了初步的认识。

在实验中,我发现通过实验观测到的波形并不像课本中画的那样完美,总是会有一些干扰信号,特别是观察负脉冲时,发现别的组都能观测到清晰的倒的三角形尖峰,而我们组怎样调都是很模糊的负尖峰。

本次试验让我对触发电路的原理有了进一步的了解。

移相范围的大小不仅可以通过调节Rp1,还可以通过调节Rp2来控制。

孔1及孔2波形:孔3及孔g1k1波形:孔4及g1k1波形:孔5及g1k1波形:孔1及孔5波形:调节脉冲移相范围的各个波形:实验二正弦波同步移相触发电路实验一.实验目的1.熟悉正弦波同步触发电路的工作原理及各元件的作用。

2.掌握正弦波同步触发电路的调试步骤和方法。

二.实验内容1.正弦波同步触发电路的调试。

2.正弦波同步触发电路各点波形的观察。

三.实验线路及原理电路分脉冲形成,同步移相,脉冲放大等环节,具体工作原理可参见“电力电子技术”有关教材。

角的同步电压输入端接MCL —18的U 、V 端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连),将“触发电路选择”拨至“正弦波”位置。

2.三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v ,并打开MCL —05面板右下角的电源开关。

用示波器观察各观察孔的电压波形,测量触发电路输出脉冲的幅度和宽度,示波器的地线接于“8”端。

注:如您选购的产品为MCL —Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

3.确定脉冲的初始相位。

当Uct=0时,要求α接近于180O 。

调节Ub (调RP )使U 3波形与图4-3b 中的U 1波形相同,这时正好有脉冲输出,α接近180O 。

4.保持Ub 不变,调节MCL-18的给定电位器RP1,逐渐增大Uct ,用示波器观察U 1及输出脉冲U GK 的波形,注意Uct 增加时脉冲的移动情况,并估计移相范围。

5.调节Uct 使α=60O ,观察并记录面板上观察孔“1”~“7”及输出脉冲电压波形。

(a )α<180O (b )α接近180O图4-3 初始相位的确定六.实验报告1. 画出α=60O 时,观察孔“1”~“7”及输出脉冲电压波形。

答:波形图见附录。

2.指出Uct 增加时,α应如何变化?移相范围大约等于多少度?指出同步电压的那一段为脉冲移相范围。

七.心得体会通过上一次的实验,我对实验台有了初步的了解,这次实验做得比较顺利。

本次试验加深了我对正弦波同步移相触发电路的理解,也让我能够熟练操作试验台,验证课本上的理论知识。

0.7Vωtωt(a)U 接近180°ωtU 1U g(b)1、2孔电压波形:1、3孔电压波形:1、4孔电压波形:1、5孔电压波形:1、6孔电压波形:1、7孔电压波形:实验三单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。

3.熟悉MCL—05锯齿波触发电路的工作。

二.实验线路及原理参见图4-7。

三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式全控整流电路供电给反电势负载。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。

6.MEL—02三相芯式变压器。

7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。

2.电阻RP的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

7.带反电势负载时,需要注意直流电动机必须先加励磁。

六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。

2.断开MEL-02和MCL-33的连接线,合上主电路电源,调节主控制屏输出电压U uv 至220V,此时锯齿波触发电路应处于工作状态。

MCL-18的给定电位器RP1逆时针调到底,使U ct=0。

调节偏移电压电位器RP2,使α=90°。

断开主电源,连接MEL-02和MCL-33。

注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

以下均同3.单相桥式全控整流电路供电给电阻负载。

接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。

合上主电路电源,调节U ct,求取在不同α角(30°、60°、90°)时整流电路的输出电压U d=f(t),晶闸管的端电压U VT=f(t)的波形,并记录相应α时的U ct、U d和交流输入电压U2值。

若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。

4.单相桥式全控整流电路供电给电阻—电感性负载。

断开平波电抗器短接线,求取在不同控制电压U ct时的输出电压U d=f(t),负载电流i d=f(t)以及晶闸管端电压U VT=f(t)波形并记录相应U ct时的U d、U2值。

注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载电流不能超过0.8A,U ct从零起调。

改变电感值(L=100mH),观察α=90°,U d=f(t)、i d=f(t)的波形,并加以分析。

注意,增加U ct使α前移时,若电流太大,可增加与L相串联的电阻加以限流。

5.单相桥式全控整流电路供电给反电势负载。

把开关S合向左侧,接入直流电动机,短接平波电抗器,短接负载电阻Rd。

(a)调节U ct,在α=90°时,观察U d=f(t),i d=f(t)以及U VT=f(t)。

注意,交流电压U UV须从0V起调,同时直流电动机必须先加励磁。

(b)直流电动机回路中串入平波电抗器(L=700mH),重复(a)的观察。

七.实验报告1.绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当α=60°,90°时的U d、U VT波形,并加以分析。

答:波形见附录,晶闸管的导通范围随α的增大而减小,大小为180°—α,U的输出波形为︱sinwt︱,每个周期的0~α角度的输出为0。

相关主题