目录1 设计任务与要求 (I)2 设计方案 (1)3 硬件设计 (2)3.1 AT89C51单片机简介 2 3.2单片机型号的选择 (6)3.3数码管显示工作原理 (6)4 软件设计 (7)4.1主程序模块介绍 (7)4.2主程序 (7)5 仿真调试 ........................................ 错误!未定义书签。
5.1K EIL仿真结果................................. 错误!未定义书签。
5.2仿真结果分析 (13)6 小结 ............................................ 错误!未定义书签。
1 设计任务与要求1. 设计一个基于单片机的电子时钟,并且能够实现时分秒的现实和调节。
2. 设计出硬件电路。
3. 设计出软件编程方法,并写出源代码。
4. 用PROTEUS进行仿真。
5.用汇方式实现目的。
7.系统的各各功能模块要编语言编实现程序设计。
6.利用查表,中断等清楚,有序。
8.程序运行时有友好的用户界面。
2 设计方案本设计主要设计了一个基于AT89C51单片机的电子时钟。
并在数码管上显示相应的时间。
并通过一个控制键用来实现时间的调节和是否进入省电模式的转换。
应用Proteus的ISIS软件实现了单片机电子时钟系统的设计与仿真。
该方法仿真效果真实、准确,节省了硬件资源。
该设计的硬件部分主要包括89C51多功能接口芯片用于开发电子时钟芯片、LED七段数码显示器用于显示时间、8031集成定时器用于定时、0.125W、8欧姆的扬声器用于定时发声。
软件部分包括主程序、定时计数中断程序、时间调整程序、延时程序四大模块。
通过中断程序进行定时器计数,时间调整程序是当键按下时间小于1秒,关闭显示(省电)进入调节时间状态,延时程序用于时间的延迟。
先设计个秒钟程序,在秒钟程序中先不设计按钮,直接通电运行,使用40H 存放计数值,从00—59,一直循环,把40H中的数值拆分成个位和十位,分别存在30H与31H中,要求动态扫描时,使用21H当标志位,用指令JB控制显示个位与十位,程序中使用中间寄存器R0与R1用于存放拆分后的字型,再传到30H与31H中去,再设计时钟程序。
3 硬件设计3.1 AT89C51单片机简介AT89C51单片机是一种低功耗,高性能的片内含有4KB可编程/擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的8位COMS微控制器,使用高密度,非易失存储技术制造,并且与AT89C51引脚和指令系统完全兼容。
芯片上的FPEROM允许在线编程或采用通用的非易失存储编程器对存储器重复编程。
3.1.1 单片机的构成AT89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多种功能的I/O线等一台计算机所需要的基本功能部件,AT89C51单片机单片机内包含下列几个部件:(1)一个8位CPU;(2)一个片内振荡器及时钟电路;(3)4K字节ROM程序存储器;(4)128字节RAM数据存储器;(5)两个16位定时器/计数器;(6)可寻址64K外部数据存储器和64K外部程序存储器空间的控制电路;(7)32条可编程的I/O线(四个8位并行I/O端口);(8)一个可编程全双工串行口;(9)具有五个中断源、两个优先级嵌套中断结构。
其内部机构框图如图3.1所示:图3.1 MCS-51单片机内部机构框图3.1.2 AT89C51单片机性能及特点(1)与MCS-51微控制器产品系列兼容。
(2)片内有4KB可在线重复编程的快闪擦写存储器(Flash Memory)。
(3)存储器可循环写入/擦除1000次。
(4)存储数据保存时间为10年。
(5)工作电压范围:Vcc可为2.7V~6V。
(6)全静态工作:可从0HZ到16MHZ。
(7)程序存储器具有3级加密保护。
(8)128﹡8位内部RAM。
(9)32条可编程I/O线。
(10)两个16位定时器/计数器。
(11)中断结构具有5个中断源和2个优先级。
(12)可编程全双工串行通道。
(13)空闲状态维持低功耗和掉电状态保存存储内容。
3.1.3 振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出,该反向放大器可以配置为片内振荡器。
3.1.4 AT89C51单片机的引脚说明AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。
图3.3 AT89C51单片机引脚图AT89C51单片机的内部硬件结构中除了程序存储器由FPEROM取代了87C51单片机的EPROM外,其余部分完全相同,其管脚说明如下:(1)VCC:供电电压(2)GND:接地(3)时钟电路XTAL1(19脚)——芯片内部振荡电路(单级反相放大器)输入端。
XTAL2(18脚)——芯片内部振荡电路(单级反相放大器)输出端。
(4)控制信号RST(9脚)复位信号:时钟电路工作后,在此引脚上将出现两个机器周期的高电平,芯片内部进行初始复位,P0口~P3口输出高电平,将初值07H写入堆栈指针。
ALE(30脚)地址锁存信号:当访问外部存储器时,P0口输出的低8位地址由ALE输出的控制信号锁存到片外地址锁存器,P0口输出地址低8位后,又能与片外存储器之间传送信息。
另外,ALE可驱动4个TTL门。
PSEN(29脚)片外程序存储器读选通:PSEN低电平有效,PSEN作为程序存储器的读信号,输出负脉冲,将相应的存储单元的指令读出并送到P0口,PSEN可驱动8个TTL门。
EA/Vpp(30脚):当EA为高电平且PC值小于0FFFH时,CPU执行内部程序存储器程序;当EA为低电平时,CPU仅执行外部程序存储器程序。
(5)I/O接口P0口(P0.0~P0.7,39~32脚)三态双向口:P0口结构包括一个输出锁存器、两个三态缓冲器、一个输出驱动电路和一个输出控制端。
P1口(P1.0~P1.7,1~8脚)准双向口:P1口做通用I/O接口使用,P1口的每一位口线能独立地作用于输入线,P1口可驱动4个TTL门。
P2口(P2.0~P2.7,21~28脚)通用I/O接口:它做通用I/O接口使用时,是一个准双向口,此时转换开关MUX倒向左边,输出极与锁存器相连,引脚可作为用户I/O口线使用,输入/输出操作与P1口完全相同,P2口做地址总线使用。
P3口(P3.0~P3.7,10~17脚)双功能口:P3口做通用I/O接口使用,输出功能控制线为高电平,与非门的输出取决于锁存器的状态,此时锁存器Q端的状态与其引脚状态是一致的。
P3口也可作为AT89C51的一些特殊功能口使用如:P3.0 RXD(串行输入口);P3.1 TXD(串行输出口);P3.2 /INT0(外部中断0);P3.3 /INT1(外部中断1);P3.4 T0(记时器0外部输入);P3.5 T1(记时器1外部输入);P3.6 /WR(外部数据存储器写选通);P3.7 /RD(外部数据存储器读选通);3.2 单片机型号的选择通过对多种单片机性能的分析,最终认为89C51是最理想的电子时钟开发芯片。
89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,而且它与MCS-51兼容,且具有4K字节可编程闪烁存储器和1000写/擦循环,数据保留时间为10年等特点,是最好的选择。
3.3 数码管显示工作原理数码管是一种把多个LED显示段集成在一起的显示设备。
有两种类型,一种是共阳型,一种是共阴型。
共阳型就是把多个LED显示段的阳极接在一起,又称为公共端。
共阴型就是把多个LED显示段的阴极接在一起,即为公共商。
阳极即为二极管的正极,又称为正极,阴极即为二极管的负极,又称为负极。
通常的数码管又分为8段,即8个LED显示段,这是为工程应用方便如设计的,分别为A、B、C、D、E、F、G、DP,其中DP 是小数点位段。
4 程序设计4.1 主程序模块介绍主程序主要完成普通运行时,循环显示时间的24小时。
4.2 主程序#include <reg51.h>#define uchar unsigned char#define uint unsigned intsbit P1_7 =P1^7;sbit P1_6 =P1^6;typedef struct{ uchar hour;uchar minute;uchar second;}time;time now={0,0,0};uchar code num_tab1[]={0x80,0x40,0x20,0x10,0x08,0x04};uchar code num_tab2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //共阳极显示uchar state=0;uchar count=100;uchar flag=0; //调整时间/定时的标志uchar recount=0;uchar recount1=0;void delay(uint time1) //延时子程序{int i;int k;for(i=0;i<time1;i++)for(k=0;k<100;k++);}void display(time disnum) //显示子程序{int hour_shi,hour_ge,min_shi,min_ge,sec_shi,sec_ge,i;int num[6]={0,0,0,0,0,0};hour_shi=disnum.hour/10;hour_ge=disnum.hour%10;min_shi=disnum.minute/10;min_ge=disnum.minute%10;sec_shi=disnum.second/10;sec_ge=disnum.second%10;num[0]=hour_shi;num[1]=hour_ge;num[2]=min_shi;num[3]=min_ge;num[4]=sec_shi;num[5]=sec_ge;for(i=0;i<6;i++){P2=num_tab1[i];P0=num_tab2[num[i]];delay(1);}}void display_1(uchar wei,uchar k) //显示子程序1 {uchar wei1,wei2;wei1=wei/10;wei2=wei%10;P2=num_tab1[k];P0=num_tab2[wei1];delay(1);P2=num_tab1[k+1];P0=num_tab2[wei2];delay(1);}void interrupt_init(void) {EA=0;TMOD=0x01;TH0=0xd8;TL0=0xf0;IT0=1;ET0=1;EX0=1;EA=1;TR0=1;if(recount!=0) {P1_7=~P1_7;recount--; }else{ P1_7=0;}if(recount1!=0) {P1_6=~P1_6;recount1--; }else{ P1_6=0;}}else{count--;}void main(void){uchar j=0;flag=0;interrupt_init(); //中断初始化P1_6=0;P1_7=0;while(1){switch(state){case 0: display(now);break;case 1: display_1(now.hour,0);break;case 2: display_1(now.minute,2);break; case 3: display_1(now.second,4);break;}}5 仿真调试5.1 KeiL调试(1)在Windows下运行Keil µVisiion3软件,进入Keil µVisiion3开发环境。