ArcGIS中的投影转换在ArcGIS中打开图层,其layers当前的坐标系统默认为打开的第一个图层数据的坐标系统。
很多时候打开不同坐标系统的数据时,坐标显示不对,不是数据有问题,而是显示问题,解决方法可以新建一个文件,或者关闭软件后重新加载数据。
这段时间经常对数据进行投影转换,主要是将大地坐标转换为平面坐标,或平面坐标转换为大地坐标,即GCS_Krasovsky_1940与高斯的转换。
开始时利用Data Management Tools->Projections and Transformations->Define Projection,但是怎么转换都不成功。
通过在网上的咨询和自己摸索,终于发现正确的转换方法。
具体如下:1、刚打开的图层如果没有坐标系统,需要按照原数据定义一个坐标系统。
说明:将高斯转为GCS_Krasovsky_1940,即平面坐标转为经纬度坐标。
方法如下图:2、再进行投影转换,方法如下图:上面是当数据本身没有坐标系统时的做法,如果不知道原来是什么投影,指定了高斯坐标系统也还是转不过去(失败,为什么???)如果本身已经有坐标系统,可以从feature -》project直接转换运行ArcGIS9中的ArcMap,打开ArcToolBox,打开 Data Management Tools ->Projections and Transformations->Feature->Project 项打开投影对话框。
在Input DataSet or Feature Class栏中输入或点击旁边的按钮选择相应的DataSet或Feature Class(带有空间参考),Output DataSet or Feature Class栏中输入或点击旁边的按钮选择目标DataSet 或Feature Class,在Output Coordinate System 栏中输入或点击旁边的按钮选择目标数据的坐标系统。
最后点OK键即可。
/zaaaaaa/blog/item/14fac9660796da20ab184ce9.htmlArcGIS 坐标系统文件坐标是GIS数据的骨骼框架,能够将我们的数据定位到相应的位置,为地图中的每一点提供准确的坐标。
ArcGIS自带了多种坐标系统,在${ArcGISHome}\Coordinate Systems\目录下可以看到三个文件夹,分别是Geographic Coordinate Systems、Projected Coordinate Systems、Vertical Coordinate Systems,中文翻译为地理坐标系、投影坐标系、垂直坐标系。
关于地理坐标系和投影坐标系的区别,网络上有相关的文章介绍--地理坐标系与投影坐标系的区别,简而言之,投影坐标系=地理坐标系+投影过程。
1 Geographic Coordinate Systems在Geographic Coordinate Systems目录中,我们可以看到已定义的许多坐标系信息,典型的如Geographic Coordinate Systems\World目录下的WGS 1984.prj,里面所定义的坐标参数:GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137,298.25722 3563]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]里面描述了地理坐标系的名称、大地基准面、椭球体、起始坐标参考点、单位等。
2 Projected Coordinate Systems在Projected Coordinate Systems目录中同样存在许多已定义的投影坐标系,我国大部分地图所采用的北京54和西安80坐标系的投影文件就在其中,它们均使用高斯-克吕格投影,前者使用克拉索夫斯基椭球体,后者使用国际大地测量协会推荐的IAG 75地球椭球体。
如Beijing 1954 3 Degree GK CM 75E.prj定义的坐标参数:PROJCS["Beijing_1954_3_Degree_GK_CM_75E",GEOGCS["GCS_Beijing_1954",DATUM["D_Beijing _1954",SPHEROID["Krasovsky_1940",6378245.0,298.3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Gauss_Kruger"],PARAME TER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",75.0],PARAMETER["Scale_Factor",1.0],PA RAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]可以看出,参数里除了包含地理坐标系的定义外,还有投影方式的信息。
北京54和西安80是我们使用最多的坐标系,在ArcGIS文件中,对于这两种坐标系统的命名有一些不同,简单看去很容易让人产生迷惑。
在此之前,先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。
具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。
为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。
由于我国疆域均在北半球,x 值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。
为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。
在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:Beijing 1954 3 Degree GK CM 75E.prjBeijing 1954 3 Degree GK Zone 25.prjBeijing 1954 GK Zone 13.prjBeijing 1954 GK Zone 13N.prj对它们的说明分别如下:三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前不加带号在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化:Xian 1980 3 Degree GK CM 75E.prjXian 1980 3 Degree GK Zone 25.prjXian 1980 GK CM 75E.prjXian 1980 GK Zone 13.prj西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。
3 Vertical Coordinate SystemsVertical Coordinate Systems定义了测量海拔或深度值的原点,具体的定义,英文描述的更为准确:A vertical coordinate system defines the origin for height or depth values. Like a horizontal coordinate system, most of the information in a vertical coordinate system is not needed unless you want to display or combine a dataset with other data that uses a different vertical coordinate system.Perhaps the most important part of a vertical coordinate system is its unit of measure. The unit of measure is always linear (e.g., international feet or meters). Another important part is whether the z values represent heights (elevations) or depths. For each type, the z-axis direction is positive "up" or "down", respectively.One z value is shown for the height-based mean sea level system. Any point that falls below the mean sea level line but is referenced to it will have a negative z value. The mean low water system has two z values associated with it. Because the mean low water system is depth-based, the z values are positive. Any point that falls above the mean low water line but is referenced to it will have a negative z value.需要注意的是,大家经常希望能够通过坐标转换,将北京54或西安80中的地理坐标系转换到WGS84,实际上这样做是不准确的,北京54或西安80的投影坐标可以通过计算转换到其对应的地理坐标系,但由于我国北京54和西安80中的地理坐标系到WGS84的转换参数没有公开,因此无法完成其到WGS84坐标的精准计算。