当前位置:文档之家› 基于可重定位分区分配算法的内存管理的设计与实现

基于可重定位分区分配算法的内存管理的设计与实现

组号成绩计算机操作系统课程设计报告题目基于可重定位分区分配算法的存管理的设计与实现专业:计算机科学与技术班级:学号+:指导教师:2016年12月 23 日一.设计目的掌握存的连续分配方式的各种分配算法二.设计容基于可重定位分区分配算法的存管理的设计与实现。

本系统模拟操作系统存分配算法的实现,实现可重定位分区分配算法,采用PCB定义结构体来表示一个进程,定义了进程的名称和大小,进程存起始地址和进程状态。

存分区表采用空闲分区表的形式来模拟实现。

要求定义与算法相关的数据结构,如PCB、空闲分区;在使用可重定位分区分配算法时必须实现紧凑。

三.设计原理可重定位分区分配算法与动态分区分配算法基本上相同,差别仅在于:在这种分配算法中,增加了紧凑功能。

通常,该算法不能找到一个足够大的空闲分区以满足用户需求时,如果所有的小的空闲分区的容量总和大于用户的要求,这是便须对存进行“紧凑”,将经过“紧凑”后所得到的大空闲分区分配给用户。

如果所有的小空闲分区的容量总和仍小于用户的要求,则返回分配失败信息四.详细设计及编码1.模块分析(1)分配模块这里采用首次适应(FF)算法。

设用户请求的分区大小为u.size,存中空闲分区大小为m.size,规定的不再切割的剩余空间大小为size。

空闲分区按地址递增的顺序排列;在分配存时,从空闲分区表第一个表目开始顺序查找,如果m.size≥u.size且m.size-u.size≤size,说明多余部分太小,不再分割,将整个分区分配给请求者;如果m.size≥u.size且m.size-u.size>size,就从该空闲分区中按请求的大小划分出一块存空间分配给用户,剩余的部分仍留在空闲分区表中;如果m.size<u.size则查找下一个空闲分区表项,直到找到一个足够大的空闲分区;如果没有找到一个足够大的存空闲分区,但所有的小的空闲分区的容量总和大于用户的要求,就进行紧凑,将紧凑后得到的大的空闲分区按上述的方式分配给用户;但如果所有的小的空闲分区的容量总和仍不能满足用户需要,则分配失败。

(2)存回收模块进行存回收操作时,先随机产生一个要回收的进程的进程号,把该进程从进程表中中删除,它所释放的空闲存空间插入到空闲分区表;如果回收区与插入点的前一个空闲分区相邻,应将回收区与插入点的前一分区合并,修改前一个分区的大小;如果回收区与插入点的后一个空闲分区相邻,应将回收区与插入点的后一分区合并,回收区的首址作为新空闲分区的首址,大小为二者之和;如果回收区同时与插入点的前、后空闲分区相邻,应将三个分区合并,使用前一个分区的首址,取消后一个分区,大小为三者之和。

(3)紧凑模块将存中所有作业进行移动,使他们全都相邻接,把原来分散的多个空闲小分区拼接成一个大分区。

2.流程图否否是是3.代码实现#include<stdio.h>#include<stdlib.h>#include<time.h>#include<windows.h>#define TURE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define SIZE 15////////////////////////////进程表////////////// int ppNo=1; //用于递增生成进程号int pLength=0;struct PCB{int pNo; //进程号(名)int pSize; // 进程大小int pOccupy; // 实际占用的存int pStartAddr; // 进程起始地址int pState; //进程状态};struct PCB pList[200];//////////////////空闲分区表部分/////////////// typedef int Status;typedef struct emptyNode{ //空闲分区结构体int areaSize; //空闲分区大小int aStartAddr; //空闲分区始址struct emptyNode *next;}emptyNode,*LinkList;int ListDelete(struct PCB *pList,int i);//AAA/删除下标为i的进程void pSort(struct PCB *pList); //AAA/存中的进程按始址递增排序void compact(LinkList &L,struct PCB *pList);//AAA/紧凑 ,存中进程移动,修改进程数据结构;空闲分区合并,修改空闲分区表数据结构void amalgamate(LinkList &L); //AAA/回收后进行合并空闲分区void recycle(LinkList &L,struct PCB *pList); //AAA/回收,从进程表中删除进程,把释放出的空间插入到空闲分区链表中Status InitList(LinkList &L); //1AAA/构造一个新的有头节点的空链表LStatus ClearList(LinkList &L); //2AAA/将链表L重置为空表Status ListInsert(LinkList &L,LinkList s1); //AAA/*****根据始址进行插入void DeleteElem(LinkList &L,int aStartAddr);//*****删除线性表中始址值为aStartAddr的结点void PrintList(LinkList L); //AAA/*****输出各结点的值void creatP(struct PCB *p); //AAA/初始化进程int search(LinkList &L,int pSize); //AAA/检索分区表 ,返回合适分区的首址int add(LinkList &L); //AAA/返回空闲分区总和void pListPrint(struct PCB *pList); //AAA/输出存中空间占用情况void distribute(LinkList &L,struct PCB *process);int ListDelete(struct PCB *pList,int i)//AAA/删除下标为i的进程{for(;i<pLength-1;i++){pList[i]=pList[i+1];}pLength--;}//ListDeletevoid pSort(struct PCB *pList){ //AAA/存中的进程按始址递增排序int i,j;struct PCB temp;for(i=0;i<pLength-1;i++){for(j=0;j<pLength-i-1;j++){if(pList[j].pStartAddr>pList[j+1].pStartAddr){temp=pList[j];pList[j]=pList[j+1];pList[j+1]=temp;}}}}//AAA/紧凑 ,存中进程移动,修改进程数据结构;空闲分区合并,修改空闲分区表数据结构void compact(LinkList &L,struct PCB *pList){printf("进行紧凑\n");//1、进程移动,修改进程数据结构int i;pList[0].pStartAddr=0; //第一个进程移到最上面for(i=0;i<pLength-1;i++){pList[i+1].pStartAddr=pList[i].pStartAddr+pList[i].pOccupy;}//2、空闲分区合并,修改空闲分区表数据结构LinkList p=L->next,s;int sumEmpty=0;while(p!=NULL)//求空闲区总和{sumEmpty+=p->areaSize;p=p->next;}ClearList(L); //清空空闲分区表s=(LinkList)malloc(sizeof(emptyNode));s->aStartAddr=pList[pLength-1].pStartAddr+pList[pLength-1].pOccupy;s->areaSize=sumEmpty;ListInsert(L,s);printf("\n紧凑后的>>>>\n");pListPrint(pList);PrintList(L);}void amalgamate(LinkList &L){//AAA/回收后进行合并空闲分区LinkList p=L->next,q=p->next;while(q!=NULL){if(p->aStartAddr+p->areaSize==q->aStartAddr){p->areaSize+=q->areaSize;DeleteElem(L,q->aStartAddr);//删除被合并的结点q=p->next;}else{p=q;q=q->next;}}}//AAA/回收,从进程表中删除进程,把释放出的空间插入到空闲分区链表中void recycle(LinkList &L,struct PCB *pList){int index,delPNo,delPSize,delPOccupy,delPStartAddr;LinkList s;srand(time(0));index=rand()%pLength;delPNo=pList[index].pNo;delPSize=pList[index].pSize;delPOccupy=pList[index].pOccupy;delPStartAddr=pList[index].pStartAddr;printf("___________________________________________________________________ _____________");printf("回收存进程 P%d: 始址:%d K 占用:%dKB\n",delPNo,delPStartAddr,delPOccupy);printf("\n回收后>>>>\n");ListDelete(pList,index);//pListPrint(pList);s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=delPOccupy;s->aStartAddr=delPStartAddr;ListInsert(L,s);amalgamate(L);pListPrint(pList);//输出存中空间占用情况PrintList(L);}///////////////////////////////////////////Status InitList(LinkList &L) //1AAA/构造一个新的有头节点的空链表L {LinkList s;L=(LinkList)malloc(sizeof(emptyNode)); //生成新节点(头结点)if(!L) return ERROR; //申请存失败s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=900;s->aStartAddr=0;L->next=s; //头节点的指针域指向第一个结点s->next=NULL;return OK;}//InitListStatus ClearList(LinkList &L) //2AAA/将链表L重置为空表{LinkList p,r;p=L->next; r=p->next;while(p!=NULL){free(p);if(r==NULL){p=NULL;}else{p=r;r=p->next;}}L->next=NULL;return OK;}//ClearList//AAA/*****根据始址进行插入Status ListInsert(LinkList &L,LinkList s1) {LinkList r=L,p=L->next,s;//指针s=(LinkList)malloc(sizeof(emptyNode));s->areaSize=s1->areaSize;s->aStartAddr=s1->aStartAddr;if(p==NULL){L->next=s;s->next=NULL;}else{while(p!=NULL){if(s1->aStartAddr < p->aStartAddr){s->next=r->next;r->next=s;break;}r=p;p=p->next; //后移}if(p==NULL){r->next=s;s->next=NULL;}}return OK;}//ListInsert2void DeleteElem(LinkList &L,int aStartAddr)//*****删除线性表中始址值为aStartAddr的结点{LinkList p=L,q;while(p->next!=NULL){q=p->next;if(q->aStartAddr==aStartAddr){p->next=q->next;free(q);}elsep=p->next;}}//DeleteElem////////////////////////////////////////////////void PrintList(LinkList L)//AAA/*****输出各结点的值{printf("\n空闲分区情况: 始址\t 大小\n");LinkList p=L->next;while(p!=NULL){printf(" %d K\t%d KB\n",p->aStartAddr,p->areaSize);p=p->next;}printf("\n");}//PrintListvoid creatP(struct PCB *p){ //AAA/初始化进程int size;srand(time(NULL));size=rand()%7+1;size*=10;p->pNo=ppNo++;p->pSize=size;p->pOccupy=0;p->pStartAddr=0;p->pState=0;}int search(LinkList &L,int pSize){ //检索分区表 ,返回合适分区的首址LinkList p=L->next;while(p!=NULL){if(p->areaSize>=pSize){return p->aStartAddr;}p=p->next;}return -1;//没有足够大的int add(LinkList &L){ //返回空闲分区总和LinkList p=L->next;int sum=0;while(p!=NULL){sum+=p->areaSize;p=p->next;}return sum;}void pListPrint(struct PCB *pList){//AAA/输出存中空间占用情况printf("\n进程分配情况: 进程\t 始址\t占用\n");for(int i=0;i<pLength;i++){printf(" P%d\t %d K\t%d KB\n",pList[i].pNo,pList[i].pStartAddr,pList[i].pOccupy); }}void distribute(LinkList &L,struct PCB *process){LinkList p=L->next;while(p!=NULL){if(p->areaSize>=process->pSize)break;p=p->next;}printf("%d KB < %d KB",process->pSize,p->areaSize);if(p->areaSize-process->pSize<=SIZE){//不用分割全部分配(直接删除此空闲分区结点)process->pStartAddr=p->aStartAddr; //进程始址变化process->pState=1; //进程状态process->pOccupy=p->areaSize; //进程实际占用存为改空闲分区的大小pList[pLength++]= *process; //把进程加入进程列表printf(" 且 %d KB - %d KB = %d KB < %d KB 则整区分配\n", p->areaSize,process->pSize,p->areaSize-process->pSize,SIZE);pSort(pList);printf("\n分配后>>>>\n");pListPrint(pList);//输出存中空间占用情况DeleteElem(L,p->aStartAddr);}else{//分割分配process->pStartAddr=p->aStartAddr; //进程始址变化process->pState=1; //进程状态process->pOccupy=process->pSize; //进程实际占用存为该进程的大小pList[pLength++]= *process; //把进程加入进程列表printf(" 且 %d KB - %d KB = %d KB > %d KB 则划分分配\n",p->areaSize,process->pSize,p->areaSize-process->pSize,SIZE);pSort(pList); //进程排序printf("\n分配后>>>>\n");pListPrint(pList);//输出存中空间占用情况//compact(L,pList);p->aStartAddr+=process->pSize; //空闲分区始址变化p->areaSize-=process->pOccupy; //空闲分区大小变化}}int main(){//0、创建一个进程,参数随机数方式产生struct PCB p;int i,num,dele,k,stAddr,flag;LinkList s,L;printf("********************************可重定位分区分配********************************");if(!InitList(L)) //初始化空闲分区表printf("创建表失败\n");while(1){srand(time(0));flag=rand()%100+1;if(flag%2==0){creatP(&p);//初始化进程printf("___________________________________________________________________ _____________");printf("待装入作业:%d Size = %d KB\n",p.pNo,p.pSize);//1、请求分配 size//2、检索空闲分区表(首次适应FF)PrintList(L);stAddr=search(L,p.pSize);//得到足够大的分区的始址,没有则返回-1if(stAddr==-1){//没有足够大的分区if(add(L)>=p.pSize){//空闲区总和足够大printf("没有足够大的空闲分区但空闲总和足够大\n");//紧凑compact(L,pList);//按动态分区方式分配distribute(L,&p);//compact(L,pList); //紧凑}else{ //空闲区总和不足printf("分配失败\n\n");}}else{//有足够大的distribute(L,&p);PrintList(L);//compact(L,pList); //紧凑}}else{//回收if(pLength>0){recycle(L,pList);//compact(L,pList); //紧凑}else{printf("无可回收存! ");}}system("pause");} //whilereturn 0;}4.结果及其相关分析图4.1分析:作业1大小为20KB。

相关主题