当前位置:文档之家› 文献翻译译文-模具的历史发展

文献翻译译文-模具的历史发展

1 模具的历史发展David O.Kazmer.Injection mold design engineering.Hanser Gardner Publications,2007.模具的出现可以追溯到几千年前的陶器和青铜器铸造,但其大规模使用却是随着现代工业的掘起而发展起来的。

19世纪,随着军火工业(枪炮的弹壳)、钟表工业、无线电工业的发展,冲模得到广泛使用。

二次大战后,随着世界经济的飞速发展,它又成了大量生产家用电器、汽车、电子仪器、照相机、钟表等零件的最佳方式。

从世界范围看,当时美国的冲压技术走在前列——许多模具先进技术,如简易模具、高效率模具、高寿命模具和冲压自动化技术等,其大多起源于美国;而瑞士的精冲、德国的冷挤压技术、苏联对塑性加工的研究也处于世界先进行列。

50年代,模具行业工作重点是根据用户的要求,制作能满足产品要求的模具。

模具设计多凭经验,参考已有图纸和感性认识,对所设计模具零件的机能缺乏真切了解。

从1955年到1965年,是冲压工业的探索和开发时代——对模具主要零部件的机能和受力状态进行了数学分桥,并把这些知识不断应用于现场实际,使得冲压技术在各方面有飞跃的发展。

其结果是总结出了模具的设计原则,并使得压力机械、冲压材料、加工方法、模具结构、模具材料、模具制造方法、自动化装置等领域更新换代,并向实用化的方向前进,从而使冲压加工进入生产优良产品的第一阶段。

进入70年代,模具进入高速化、机械化、精密化、安全化发展的第二阶段。

在这个过程中不断涌现各种高效率、高寿命、高精度、多功能的自动化模具。

其代表是多个工位的级进模和十几个工位的多工位传递模。

在此基础上又发展出既有连续冲压工位又有多滑块成形工位的压力机—弯曲机。

在此期间,日本站到了世界最前列——其模具加工精度进入了微米级,模具寿命,合金钢制造的模具达到了几千万次,硬质合金钢制造的模具达到了几亿次。

在冲压模具中,每分钟冲压次数,小型压力机通常为200至300次,最高为1200次至1500次。

在此期间,为了适应产品更新快、用期短(如汽车改型、玩具翻新等)的需要,各种经济型模具,如锌铬合金模具、聚氨酯橡胶模具、钢皮冲模等也得到了很大发展。

从70年代中期至今可以说是计算机辅助设计、辅助制造技术不断发展的时代。

随着模具加工精度与复杂性不断提高,生产周期不断加快,模具业对设备和人员素质的要求也不断提高。

依靠普通加工设备,凭经验和手艺越来越不能满足模具生产的需要。

90年代以来,机械技术和电子技术紧密结合,发展了NC机床,如数控线切割机床、数控电火花机床、数控铣床、数控坐标磨床等。

进而出现了采用电子计算机自动编程、控制的CNC机床,提高了数控机床的使用效率和范围。

近年来又发展出由一台计算机以分时的方式直接管理和控制一群数控机床的NNC系统。

随着计算机技术的发展,计算机也逐步进入模具生产的各个领域,包括设计、制造、管理等。

国际生产研究协会预测,到2000年,作为设计和制造之间联系手段的图纸将失去其主要作用。

模具自动设计的最根本点是必须确立模具零件标准及设计标准。

要摆脱过去以人的思考判断和实际经验为中心所组成的设计方法,就必须把过去的经验和思考方法,进行系列化、数值化、数式化,作为设计准则储存到计算机中。

因为模具构成元件也干差万别,要搞出一个能适应各种零件的设计软件几乎不可能。

但是有些产品的零件形状变化不大,模具结构有一定的规律,可总结归纳,为自动设计提供软件。

如日本某公司的CDM系统用于级进模设计与制造,其中包括零件图形输入、毛坯展开、条料排样、确定模板尺寸和标准、绘制装配图和零件图、输出NC程序(为数控加工中心和线切割编程)等,所用时间由手工的20%、工时减少到35小时;从80年代初日本就将三维的CAD/CAM系统用于汽车覆盖件模具。

目前,在实体件的扫描输入,图线和数据输入,几何造形、显示、绘图、标注以及对数据的自动编程,产生效控机床控制系统的后置处理文件等方面已达到较高水平;计算机仿真(CAE)技术也取得了一定成果。

在高层次上,CAD/CAM/CAE集成的,即数据是统一的,可以互相直接传输信息.实现网络化。

目前.国外仅有少数厂家能够做到。

2 冲压冲压是通过模具使板材产生塑性变形而获得成品零件的一种成形工艺方法。

由于冲压通常在冷态下进行,因此也称冷冲压。

只有当板材厚度超过8-100毫米时,才采用热冲压。

冲压加工的原材料一般为板材或带材,故也称板材冲压。

某些非金属板材(如胶木板、云母片、石棉、皮革等)亦可采用冲压成形工艺进行加工。

冲压广泛应用于金属制品各行业中,尤其在汽车、仪表、军工、家用电器等工业中占有极其重要的地位。

冲压成形需研究工艺、设备和模具三类基本问题。

板材冲压具有下列特点:(1)材料利用率高;(2)可加工薄壁、形状复杂的零件;(3)冲压件在形状和尺寸精度方面的互换性好;(4)能获得质量轻而强度高、刚性好的零件;(5)生产率高,操作简单,容易实现机械化和自动化;冲压模具制造成本高,因此适合于大批量生产。

对于小批量、多品种生产常采用简易冲模,同时引进冲压加工中心等新型设备,以满足市场求新求变的需求。

板材冲压常用的金属材料有低碳钢、铜、铝、镁合金及高塑性的合金钢等。

如前所述,材料形状有板材和带材。

冲压生产设备有剪床和冲床。

剪床是用来将板材剪切成具有一定宽度的条料,以供后续冲压工序使用,冲床可用于剪切及成形。

生产实践中所采用的冲压成形工艺方法有很多,具有多种形式和名称,但其塑性变形本质是相同的。

冲压成形具有如下几个非常突出的特点。

(1)垂直于板面方向的单位面积上的压力,其数值不大便足以在板面方向上使板材产生塑性变形。

由于垂直于板面方向上的单位面积上压力的数值远小于板面方向上的内应力,所以大多数的冲压变形都可以近似地当作平面应力状态来处理,使其变形力学的分析和工艺参数的计算等工作都得到很大的简化。

(2)由于冲压成形用的板材毛坯的相对厚度很小,在压应力作用下的抗失稳能力也很差,所以在没有抗失稳装置(如压边圈等)的条件下,很难在自由状态下顺利地完成冲压成形过程。

因此,以拉应力作用为主的伸长类冲压成形过程,多于以压应力作用为主的压缩类成形过程。

(3)冲压成形时,板材毛坯内应力的数值等于或小于材料的屈服应力。

在这一点上,冲压成形与体积成形的差别很大。

因此,在冲压成形时变形区应力状态中的静水压力成分对成形极限与变形抗力的影响,已失去其在体积成形时的重要程度,有些情况下,甚至可以完全不予考虑,即使有必要考虑时,其处理方法也不相同。

(4)在冲压成形时,模具对板材毛坯作用力所形成的约束作用较轻,不像体积成形(如模锻等)是靠与制件形状完全相同的型腔对毛坯进行全面接触而实现的强制成形。

在冲压成形中,大多数情况下,板材毛坯都有某种程度的自由度,常常是只有一个表面与模具接触,甚至有时存在板材两侧表面都不与模具接触的变形部分。

在这种情况下,这部分毛坯的变形是靠模具对其相邻部分施加的外力实现其控制作用的。

例如,球面和锥面零件成形时的悬空部分和管坯端部的卷边成形等都属这种情况。

由于冲压成形具有上述一些变形与力学方面的特点,致使冲压技术也形成了一些与体积成形不同的特点。

(1)由于不需要在板材毛坯的表面施加很大的单位压力即可使其成形,所以在冲压技术中关于模具强度与刚度的研究并不十分重要。

相反地却发展了许多简易模具技术。

由于相同的原因,也促使靠气体或液体压力成形的工艺方法得以发展。

(2)因冲压成形时的平面应力状态或更为单纯的应变状态(与体积成形相比),当前对冲压成形中毛坯的变形、力与电能参数方面的研究较为深人,有条件运用合理的科学方法进行冲压加工。

借助于电子计算机与先进的测试手段,在对板材性能与冲压变形参数进行实时测量与分析的基础上,实现冲压过程智能化控制的研究工作也在开展。

(3)人们已经认识到冲压成形与原材料有十分密切的关系。

所以,对板材冲压性能即成形性与形状稳定性的研究,目前已成为冲压技术的一个重要内容。

对板材冲压性能的研究工作不仅是冲压技术发展的需要,而且也促进了钢铁工业生产技术的发展,为其提高板材的质量提供了一个可靠的基础与依据。

3 我国模具工业现状及发展趋势由于历史原因形成的封闭式、“大而全”的企业特征,我国大部分企业均设有模具车间,处于本厂的配套地位,自70年代末才有了模具工业化和生产专业化这个概念。

生产效率不高,经济效益较差。

模具行业的生产小而散乱,跨行业、投资密集,专业化、商品化和技术管理水平都比较低。

据不完全统计,全国现有模具专业生产厂、产品厂配套的模具车间(分厂)近17000家,约60万从业人员,年模具总产值达200亿元人民币。

但是,我国模具工业现有能力只能满足需求量的60%左右,还不能适应国民经济发展的需要。

目前,国内需要的大型、精密、复杂和长寿命的模具还主要依靠进口。

据海关统计,1997年进口模具价值6.3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。

目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。

3.1 模具工业产品结构的现状按照中国模具工业协会的划分,我国模具基本分为10大类,其中,冲压模和塑料成型模两大类占主要部分。

按产值计算,目前我国冲压模占50%左右,塑料成形模约占20%,拉丝模(工具)约占10%,而世界上发达工业国家和地区的塑料成形模比例一般占全部模具产值的40%以上。

我国冲压模大多为简单模、单工序模和符合模等,精冲模,精密多工位级进模还为数不多,模具平均寿命不足100万次,模具最高寿命达到1亿次以上,精度达到3~5um,有50个以上的级进工位,与国际上最高模具寿命6亿次,平均模具寿命5000万次相比,处于80年代中期国际先进水平。

我国的塑料成形模具设计,制作技术起步较晚,整体水平还较低。

目前单型腔,简单型腔的模具达70%以上,仍占主导地位。

一模多腔精密复杂的塑料注射模,多色塑料注射模已经能初步设计和制造。

模具平均寿命约为80万次左右,主要差距是模具零件变形大、溢边毛刺大、表面质量差、模具型腔冲蚀和腐蚀严重、模具排气不畅和型腔易损等,注射模精度已达到5um以下,最高寿命已突破2000万次,型腔数量已超过100腔,达到了80年代中期至90年代初期的国际先进水平。

3.2 模具工业技术结构现状我国模具工业目前技术水平参差不齐,悬殊较大。

从总体上来讲,与发达工业国家及港台地区先进水平相比,还有较大的差距。

在采用CAD/CAM/CAE/CAPP等技术设计与制造模具方面,无论是应用的广泛性,还是技术水平上都存在很大的差距。

在应用CAD技术设计模具方面,仅有约10%的模具在设计中采用了CAD,距抛开绘图板还有漫长的一段路要走;在应用CAE进行模具方案设计和分析计算方面,也才刚刚起步,大多还处于试用和动画游戏阶段;在应用CAM技术制造模具方面,一是缺乏先进适用的制造装备,二是现有的工艺设备(包括近10多年来引进的先进设备)或因计算机制式(IBM微机及其兼容机、HP工作站等)不同,或因字节差异、运算速度差异、抗电磁干扰能力差异等,联网率较低,只有5%左右的模具制造设备近年来才开展这项工作;在应用CAPP技术进行工艺规划方面,基本上处于空白状态,需要进行大量的标准化基础工作;在模具共性工艺技术,如模具快速成型技术、抛光技术、电铸成型技术、表面处理技术等方面的CAD/CAM技术应用在我国才刚起步。

相关主题