电磁波与微波技术课程设计带阻滤波器的设计与仿真课题:带阻滤波器的设计与仿真指导老师:姓名:学号:绪言带阻滤波器是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器, 微波滤波器具有选频、分频和隔离信号等重要作用,在现代微波毫米波通信、卫星通信、遥感和雷达技术等系统中应用广泛,其性能的优劣将直接影响到整个系统的运行质量。
而带阻滤波器作为微波滤波器的一种,在通信系统中也起着十分重要的作用。
通常在许多微波系统中,要求信号传输时,衰减应尽可能的小,而对不需要的噪声、干扰、杂散等则要抑制掉,即需具有很高的衰减度。
带阻滤波器适于在宽频范围滤除某窄带频,无线通信系统中抑制高功率发射机、非线性功放的杂散频谱以及带通滤波器的寄生通带等,这时,如采用一个或几个带阻滤波器来抑制它们,就比采用带通滤波器的宽阻带来抑制更加灵活有效。
目录1.课程设计要求 (4)2.微带短截线带阻滤波器的理论基础 (4)2.1理查德变换 (5)2.2科洛达规则 (7)3.设计步骤 (7)3.1ADS 简介 (7)3.2设计步骤、计算及仿真 (8)3.3优化设计过程 (20)3.4对比结果 (23)4.心得体会 (24)5.参考文献 (24)1.课程设计要求:1.1 设计题目:带阻滤波器的设计与仿真。
1.2设计方式:分组课外利用ads软件进行设计。
1.3设计时间:第一周至第十七周。
1.4 带阻滤波器中心频率:5.8GHz;相对带宽:9%;带内波纹:<0.2dB。
1.5 滤波器阻带衰减>25dB;在频率5.3GHz和6.3GHz处,衰减<3dB;输入输出阻抗:50Ω。
2.微带短截线带阻滤波器的理论基础当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。
我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。
2.1 理查德变换通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。
终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。
在传输线理论中,终端短路传输线的输入阻抗为:= (1.0)式中当传输线的长度= 时(1.1)将式(1.1)代入式(1.1),可以得到(1.2)式中(1.3)称为归一化频率。
终端短路的一段传输线可以等效为集总元件电感,等效关系为(1.4)式中S = j(1.5)称为理查德变换。
同样,终端开路的一段传输线可以等效为集总元件的电容。
终端开路传输线的输入导纳为(1.6)式中S = j 为理查德变换。
前面将电感和电容用一段传输线等效时,传输线的长度选择为,这样的选择有个好处,因为点f =S = j = j1 (1.7)这适合将集总元件低通滤波器原型转换为由传输线构成的低通滤波器,这时低通滤波器原型的电感值与终端短路传输线的归一化特性阻抗值相等,低通滤波器原型的电容值与终端开路传输线的归一化特性导纳值相等。
当传输线的长度时,这种选择适合将集总元件低通滤波器原型转换为由传输线构成的带阻滤波器。
所以我们在做设计时用的传输线的长度为。
2.2 科洛达规则科洛达规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。
利用科洛达规则既可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开,附加的传输线段称为单位元件。
在设计低通滤波器时,将集总元件转换为分布元件采用了0λ/8长传输线,但这种转换方式不能用于帯阻滤波器的设计。
帯阻滤波器对应于电路的串联和并联连接方式,在中心频率点必须有最大和最小阻抗,考虑到0λ/4长传输线在中心频率点f=f0处正切函数为无穷大,正好符合帯阻滤波器的要求,帯阻滤波器讲集总元件转换为分布参数元件时采用了0λ/4长传输线。
3.1 ADS简介ADS(Advanced Design System)电子设计自动化软件为美国Agilent Technologies公司的产品,该软件的功能包含时域电路模拟(SPICE-like Simulation)、频域电路模拟(HarmonicBalance Linear Analysis)、电磁模拟(EM Simulation)、通信系统模拟(Communication SystemSimulation)、数字信号处理设计(DSP)等。
此外和多家芯片厂商合作建立ADS Design Kit及Model File供设计人员使用。
使用者可以利用Design Kit及软件模拟功能进行通信系统的设计、规划与评估,以及MMIC/RFIC、类比与数位电路设计。
除上述的设计模拟功能外,ADS也提供辅助设计功能,如Design Guide是以范例及指令方式示范电路或系统的设计规划流程,而Simulation Wizard是以步骤式界面进行电路设计与分析。
ADS还能提供与其他设计模拟软件(如SPICE、Mentor Graphics的ModelSim、Cadence的NC-Verilog、Mathworks的MATLAB等)做Co-Simulation,加上丰富的元件/应用模型库及量测/验证仪器间的连接功能,将增加电路与系统设计的方便性、速度与精确性。
它提供优秀的频率模式和混合模式电路仿真器,可以模拟整个通信信号通路,完成从电路到系统的各级仿真。
它把广泛的经过验证的射频、混合信号和电磁设计工具集成到一个灵活的环境中。
ADS采用自顶至底的设计和自底至顶的验证方法,将系统设计和验证时间降到最少。
它具有DSP、RF和EM协同仿真能力,从而能在系统级设计中高效率地分配和优化系统性能。
完成系统建模后,就可用实际RE和DSP电路设计替代行为模型,评估它们对性能的影响。
当任何一级仿真结果不理想时,都必须回到原理图中重新进行优化,并再次进行仿真,直到仿真结果满意为止,这样可以保证实际电路与仿真电路的一致性。
ADS可以为电路设计者提供进行模拟、射频与微波等电路和通信系统设计的仿真分析方法,其提供的仿真分析方法大致可以分为时域仿真、频域仿真、系统仿真和电磁仿真。
利用微带短截线带阻滤波器的理论基础,可以方便地设计出符合技术指标的微带短截线滤波器。
下面我们用ADS设计并仿真微带短截线带阻滤波器的原理图,。
微带短截线带阻滤波器的设计指标如下:中心频率:5.8GHz;相对带宽:9%;带内波纹:<0.2dB。
滤波器阻带衰减>25dB;在频率5.3GHz和6.3GHz处,衰减<3dB;输入输出阻抗:50Ω。
3.2设计步骤、计算及仿真根据需要的滤波器的滤波器通带和阻带衰减指标,在带阻滤波器设计向导中生成原理图,并且确定阶数数N以及所要得到的理想波形,操作如下:打开ADS窗口,建立工程,在原理图窗口中的工具栏中选择【DesignGuide】--【Filter】--【FilterControl Window】单击确定后,弹出向导窗口,选择Filter Assistant选项,在窗口中输入Fs1=5.3,Fs=6.3,Fp 1=5.539,Fp2=6.061,Ap=0.16,As=2,可得阶数为3阶,单击Design,生成原理图(一)由电感L和电容C可构成基本的低通滤波器•在设计向导中生成原理图:•据需要的滤波器的滤波器通带和阻带衰减指标,在带阻滤波器设计向导中生成原理图,并且确定阶数数N以及所要得到的理想波形,操作如下:•打开ADS窗口,建立工程,在原理图窗口中的工具栏中选择【DesignGuide】--【Filter】--【FilterControl Window】单击确定后,弹出向导窗口,选择Filter Assistant选项,在窗口中输入Fs1=5.3,Fs=6.3,Fp 1=5.539,Fp2=6.061,Ap=0.16,As=2•由上表可以得到N=3,最平坦响应低通滤波器原型元件值为: g1=1.0=L1,g2=2.0=C2,g3=1.0=L3,(二)利用理查德变换,将集总元件变换成短截线,• 微带线的特性阻抗可以利用宽带系数bf 和归一化参数g 进行计算:•Z1=Z3=bf*g1,Y1=1/Z2=bf*g2其中bf=0.4142,相应的参数为:Z1=0.4142;Z2=1.2071;Z3=0.4142(数值为归一化值)。
•利用科洛达规则,将串联短截线变换为并联短截线。
按照科洛达规则对上图框内的部分进行变换,例如左侧框内的电路可以计算表示为:•N=1+ZUE 1/Z1=3.4142可以推出:•Z1’=NZUE 1=3.4142, ZUE 1=NZ1=1.4142相应的参数为:Z1=3.4142;Z2=1.2071;Z3=3.4142;Z UE1=1.4142;Z UE2=1.4142(数值为归一化值)。
(四)利用阻抗变换,用50Ω乘以上图中传输线的归一化特性阻抗为Z1=170.71;Z2=60.4;Z3=170.7;Z UE1=70.7;Z UE2=70.73.2.2 利用ADS的工具tools完成对微带线的计算1.设置微带线参数。
在【Microstrip Substrate】对话框中进行设置,设置好后在原理图中有:Er=2.7,表示微带线基板的相对介电常数为2.7。
Mur=1,表示微带线的相对磁导率为1。
H=1mm,表示微带线基板的厚度为1mm。
Hu=1.0e+033,表示微带线的封装高度为1.0e+033。
T=0.05mm,表示微带线的导体厚度为0.05mm。
Cond=5.8E+7,表示微带线导体的电导率为5.8E+7。
TanD=0.0003,表示微带线的损耗角正切为0.0003. Freq=5.8GHZ,表示计算时采用的频率为5.8GHZ.在微带线元件面板上,选择一个微带线MLIN,插入原理图的画图区。
在画图区中选中微带线MLIN,再选择【tools】调出【LineCalc】计算窗口。
在【LineCalc】计算窗口,设置:将频率Freq 设置为5.8 GHz,微带线的特性阻抗设置为70.7 Ohm,微带线的长度相移设置为90度点击【Synthesize】按钮可计算出微带线的宽度W =1.459mm 和微带线的长度L = 8.843mm(4)依照(3)改变特性阻抗,计算微带线的宽度与长度,结果如下:放置元件,及参数设置;在原理图的元件面板列表上,选择微带线【Tlines-Microstrip】元件面板上出现与微带线对应的元件图标。