小议我国光纤通信技术的现状与发展
发表时间:2009-04-08T12:25:18.700Z 来源:《科海故事博览•科教创新》2009年第3期供稿作者:潘盎[导读] 简要论述光纤通信技术的现状优势,并对我国光纤通信技术的未来发展进行展望。
摘要:现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的发展优势。
笔者简要论述光纤通信技术的现状优势,并对我国光纤通信技术的未来发展进行展望。
关键词:光纤通信技术发展优势传输一、光纤通信概述光纤通信是利用光作为信息载体、以光纤作为传输媒质的通信方式。
实现光纤通信除了需要将传统多样的电信号转换为光信号的装置,还需要有传输光信号的介质以及将光信号转换为电信号的装置。
所以在光纤通信中有3个主要的技术问题:便于应用且性能优良的光源;能长距离传输光信号的传输介质;灵敏地接收光信号并能把光信号转化为电信号的光检测器。
光源是光纤传输系统的心脏部件,它的功能是实现电/光转换,其性能的好坏对整个传输系统的质量有举足轻重的作用。
一个完整的光通信系统,除光纤、光源和光检测器外,还需要许多其它光器件,特别是无源器件。
这些器件对光纤通信系统的构成、功能的扩展或性能的提高,都是不可缺少的。
虽然对各种器件的特性有不同的要求,但是普遍要求插人损耗小、反射损耗大、工作范围宽、性能稳定、寿命长、体积小、价格便宜等,许多器件还要求便于集成。
在光纤通信系统中,作为载波的光波频率比电波的频率高的多,而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,所以说光纤通信的容量要比微波通信大几十亿倍。
二、光纤通信技术优势1,频带极宽,通信容量大。
光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。
2,抗电磁干扰能力强。
光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。
与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。
3,对电气绝缘。
光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路。
光纤之间的串扰非常小,设备接口问题也简化了。
特别是光纤在电气危险环境中广泛应用,因为它不会产生电弧和火化。
4,无串音干扰,保密性好在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而而容易被窃听,保密性差。
光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,这样,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
5,光纤径细、重量轻、柔软、易于铺设。
光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。
这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。
三、我国光纤通信技术的现状和发展
1、我国光通信历程的回顾我国的光通信起步较早,70年代初就开始了大气传输光通信的研究,随之又进行光纤和光电器件的研究,自1977年初,研制出第一根石英光纤起,跨过一道道难关,取得一个又一个零的突破。
我国光纤通信技术发展速度之快令世界瞩目,目前,铺设光纤总长度达2 500万km,覆盖了全国省会以上城市和70多地市;参与建设、投资近20条海底光缆,能与世界上70多个国家和地区进行通信业务;已基本上掌握了100 Gb/s的同步数字体系高速光通信系统技术、288芯和648芯带状光缆生产技术以及应用到同步数字体系高速光通信系统中的光放大器生产技术等。
近年来,光通信以年均15%—20%的速度发展,成为我国与发达国家之间差距最小的领域之一。
但应该看到的是,我国光纤通信设备所需的一些关键技术、元器件、材料仍部分依赖进口,所以,今后光传输仍应是信息产业建设发展的重点。
日渐成熟的光纤通信技术已经和正在为信息的扩容和IP网络的发展起着巨大的推动作用,而21世纪的光纤通信技术必将迎来一个飞速发展的新高潮,向着高速率、大容量、性能价格比合理的全光网络发展。
2、我国光纤通信技术的发展第一,宽带光接入技术。
通过研究宽带光接入技术,解决未来互联网多业务高效接入问题。
在具体研究过程中将研究基于千兆以太网的宽带无源光网络系统技术、动态带宽分配方案与实现技术、具有高性价比的宽带接入解决方案与实用化技术、相关性能指标与测试技术等,最终掌握具有自主知识产权的宽带光接入核心技术,提出相关规范,获得相关专利,建立应用系统。
第二,节点光交换技术。
通过研究光交换技术,解决未来互联网中节点业务交换等问题。
在具体研究过程中将重点研究基于光突发交换的系统构架、网络模型、业务模型、路由算法、突发交换模块、突发交换信令控制、边缘路由处的突发分组适配、动态带宽分配、相关性能指标与测试等核心技术,支持图像、话音、数据等业务的接入,提出相关规范,获得相关专利,建立试验系统。
第三,智能光联网技术。
通过研究智能光联网技术,解决未来互联网在光层上的动态、灵活、高效的组网问题。
在具体研究过程中将重点研究自动交换光网络,掌握核心技术,研制节点设备,提出相关规范,完成系统及组网试验。
尤其是对ASON的控制平面、传送平面和管理平面技术进行深入研究,攻克多粒度光交换、动态波长选路与连接类型、接口单元(NNI、UNI)、业务适配与接入、自动资源发现、控制协议、接口与信令、链路监控与管理、组网与生存性、核心功能软件与网络管理系统等关键技术,同时在测试技术方面,研究自动交换光网络的总体技术要求、性能评估方法和相应的测试方法,完成包括光接口、光节点、光网络等不同层面的功能测试、性能测试、协议测试、联网测试等。
四、结论30多年来,经过科技人员长期不懈的艰苦努力,我国在光通信技术的研究和应用上都已取得了巨大成功,实现了从无到有、从小到大、从弱到强的历史性跨越,综合实力显著增强。
目前,光纤通信不但已成为我国通信网中最主要的传输技术,而且也是我国高新技术中与国外差距最小的领域之一,并且这一差距正随着我国光纤通信技术的快速发展而越来越小。
相信,借助于微电子技术、光电子技术和光信息技术的快速进步,朝着以上研究方向不断努力,我国的光通信技术将会得到更快的发展。
参考文献:
[1] 李峰. 浅谈光纤通信的优越性[J]. 山西建筑 , 2004,(22)
[2] 穆永民. 光纤通信的现状及其发展[J]. 电力自动化设备 , 1997,(03)
[3] 黄俊武. 各国光纤通信的发展[J]. 中国铁路 , 2007,(02)。