对现代高层建筑常见施工技术的探讨摘要:在城市建设中,由于人口密集而土地有限,人们便向空中及地下发展,建造了大量高层建筑,以获得更大的活动空间;同时,由于现代科学技术的发展及新村料、新工艺、新设备的涌现,也为高层建筑设计与施工奠定了基础。
本文结合笔者多年的工作经验,着重探讨高层建筑中常见的混凝土工程施工技术、结构转换层施工技术以及施工后浇带的施工技术。
关键词:高层建筑;建筑工程;施工技术0 前言近年来,我国高层建筑施工领域的理论和技术发展很快,有些方面已接近或赶上世界先进水平。
随着国际、国内先进技术、先进设备和机械化施工的进入以及机算机在施工中的应用,带动了建筑行业整体水平的提高,尤其重点项目,高层综合楼的施工,对组织者的要求提出更高的要求。
1现代高层建筑施工特点高层建筑是指十层以上的住宅以及总高度超过24m的公共建筑和综合性建筑。
高层建筑的楼层多、高度大,从建筑结构和使用功能等方面,针对高层建筑的特点,提出了一些新的要求。
高层建筑要求施工具有高度连续性和高质量,施工技术和组织管理复杂,除具有一般多层建筑施工的一些特点外,还具有以下施工特点:(1)高层建筑工程量大、工序多、配合复杂;施工准备工作量大。
据统计,我国目前高层建筑平均建筑面积约为1.5万m:。
由于工程量大,工程项目多,涉及单位多、工种多。
特别是一些大型复杂的高层建筑,往往是边设计、边准备、边施工,总、分包涉及许多单位,协作关系涉及众多部门。
这就带来了高层建筑施工计划、组织、管理、协调的难度大。
必须精心施工,加强集中管理。
当然,由于高层建筑层数多、工作面大,就可充分利用时间和空间,进行平行流水立体交叉作业。
(2)施工周期长、工期紧;高层建筑施工周期长,季节性施工(雨施、冬施)不可避免。
高层建筑施工工期一般都在两年左右,大的项目工期甚至可达三至四年,要缩短施工周期,主要是缩短结构和装饰施工周期。
各种高层结构体系可以采用不同的施工方法,由于高层建筑施工工期长,而现浇混凝土是高层建筑施工的主导工序,合理的选择模板体系是缩短主体结构工期,降低成本的主要途径之。
(3)基础深、基坑支护和地基处理复杂。
深基础施工,地基处理复杂。
尤其是在软土地基,基础施工方案有多种选择,对造价和工期影响很大。
施工时还必须保护相邻建筑、道路和地下管线不遭损坏,一般在基础工程施工时,均要采用妥当的挡土或加固措施。
特别是在基坑降水及邻近建筑物的基坑开挖过程中,要密切注意地面、道路及地上建筑物是否有裂缝产生及其发展趋势,及时采取相应的技术措施,避免造成对市政工程及相邻建筑物结构的破坏。
高层建筑为了保证其整体稳定性,地基埋置深度不宜小于建筑物高度的1/l2;采用桩基时,不宜小于建筑物高度的1/l5(桩的长度不计算在埋置深度内),至少应有一层地下室。
因此,一般埋深至少在地面以下5m。
超高层建筑的基础埋置深度甚至达20m以上。
(4)高处作业多、垂直运输量大。
高空作业要突出解决好材料、制品、机具设备和人员的垂直运输。
在施工全过程中,要认真做好高空安全保护、防火、用水、用电、通讯、临时厕所等问题,防止物体坠落打击事故;层数多、高度大,安全防护要求严。
由此导致高层建筑施工的主要特点之一是垂直运输工作量大,没有与之相适应的垂直运输设备,要建造高层建筑是极为困难的。
(5)结构装修、防水质量要求高,技术复杂;平行流水、作业多,机械化程度高。
目前国内多层、低层建筑以砖混结构为主,高层建筑则以钢筋混凝土为主,并逐步发展钢和钢混结构。
因此,以钢筋混凝土和钢为主要结构材料及相关的施工技术成为高层建筑施工的特色。
而钢筋混凝土又以现浇为主,需要着重研究解决各种工业化模板、钢筋连接、高性能混凝土、建筑制品、结构安装等施工技术。
(6)装饰、消防、防水、设备等要求较高。
随着经济和科学技术的不断发展和人民物质、精神要求的不断提高,自然带来了对设计和施工的高要求。
反映在建筑美学上,摈弃千篇一律的平顶方盒子建筑。
在高层建筑的设计上,平面类型的多样化、立面造型的个性化、立面色彩与周围环境的协调和谐,已经成为时代潮流。
使得高层建筑在使用功能、平面布局和立面造型方面都有更高的要求。
立面处理要求高,消防设施要求高,深基础、地下室、墙面、屋面、厨房、卫生问的防水,甚至管道冷凝水的处理,都比多层建筑要求高,并且高层建筑的设备繁多,高级装修装饰多。
这些都给施工提出了更高的质量和技术要求。
2 高层建筑基础施工技术特性2. 1基础埋置较深根据《钢筋混凝土高层建筑结构设计与施工规程》规定,基础埋置深度,天然地基时应为建筑高度的l/12;桩基时应为建筑高度的1/15,桩长不计在埋置深度以内。
且充分利用地下空间,高层建筑一般将地下室建成3~4层,深达20多米,所以深基础工程已成为建造高层建筑的条件。
2. 2 深基坑工程的设计与施工风险较大高层建筑在城市鳞次栉比,施工场地狭窄。
由于邻近建筑及四周市政工程设施的安全和保护,对基坑工程的稳定和位移要求很严,而基坑工程在施工过程中大部分是临时工程。
深基坑的开挖与支护,这是地下工程极其富有变化的领域,它包含土力学强度与稳定问题、位移变形问题、土与支护结构相互作用问题以及环境岩土工程问题。
这些问题随着岩土性质不同而差异很大。
设计施工不当,极易发生基坑工程事故。
基坑深度超过5m以上的项目,其边坡支护和基坑开挖、地下降水等均应有专项施工方案,且该方案应请富有专业知识和施工经验的专家组进行可行性论证,由项目总监审核后才能实施。
土方工程包括大量土方挖运和拆除支护以及回填,有的工程土方量很大,如何挖运是重要内容。
拆除支护支撑,也是在设计方案中应考虑的问题。
2. 3 正确处理好主房与裙房的基础关系正确处理好主房与裙房的关系,这是建筑功能中必须的;高层建筑往往设置主楼与裙房,并必须连结在一起。
主楼高裙房低,沉降不同。
因此在设计与施工时,必须防止两者间产生较大的差异沉降,使其符合规范要求。
高层建筑常用的基础形式有:十字交叉条形基础、筏板基础、箱形基础、桩基础和复合基础。
为了保证基础的稳定性,防止基础滑移,高层建筑基础工程施工时,必须解决人工地基、降低地下水位、支护工程、基础混凝土浇筑以及防止基础施工影响邻近建筑和地下管道等问题。
高层建筑的基础施工主要有降水及土方开挖、基坑的支护、基础混凝土浇筑等工作。
大体积混凝土的施工箱基和筏基的底板较厚,特别是厚筏板其底板混凝土常达3~4m厚。
3混凝土工程施工技术抗压强度是混凝土质量主要指标之一,混凝土抗压强度与混凝土用水及水泥的强度成正比;当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。
所以混凝土施工时切勿用错了水泥标号。
另外,水灰比也与混凝土强度成正比,水灰比大,混凝土强度高,水灰比小,混凝土强度低。
因此,当水灰比不变时,企图用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。
综上所述,影响混凝土抗压强度的主要因素是水泥强度和水灰比;要控制好混凝土质量最重要的是:控制好水泥和混凝土的水灰比两个主要环节。
混凝土质量控制包含三个基本内容:(1)通过对原材料的质量检验与控制、混凝土配合比的确定与控制、混凝土生产和施工过程各工序的质量检验与控制、以及合格性检验控制,使混凝土质量符合规定要求。
(2)在生产和施工过程中进行质量检测,计算统计参数,应用各种质量管理图表,掌握动态信息,控制整个生产和施工期间的混凝土质量,并遵循升级循环的方式,制订改进与提高质量的措施,完善质量控制过程,使混凝土质量稳定提高。
(3)必须配备相应的技术人员和必要的检验及试验设备,建立和健全必要的技术管理与质量控制制度。
4 结构转换层施工技术高层建筑从建筑的功能上一般上部要求小空间的轴线布置,而下部则需要大空间的轴线布置。
上述要求与结构合理、自然布置正好相反。
由于高层建筑结构下部楼层受力很大,上部受力较小,正常布置时应当是下部刚度大、墙多、柱网密,到上部渐减少墙、柱,扩大轴线间距。
结构的正常布置与建筑功能之间就产生了矛盾。
为了满足建筑功能的要求,结构必须以和常规相反的方式进行布置。
上部布置小空间,下部布置大空间。
上部布置刚度大的剪力墙,下部布置刚度小的框架柱。
为了实现这种结构布置,就必须在结构转换的楼层设置转换层。
这种转换层广泛应用于剪力墙结构及框架—剪力墙等结构体系中。
不管采用何种转换形式,带转换层的剪力墙结构仍是目前工程应用的主要结构形式。
同时,由于转换层位置越来越高,带转换层的简体结构也时有应用。
对带转换层的剪力墙结构及带转换层简体结构这两类转换结构。
通过转换层上下层间位移角及内力变化情况的分析,可得出影响其抗震性能的主要因素,分别是:转换层设置高度、转换层上部与下部结构等效刚度比、转换层结构与其上层结构侧向刚度比。
对带转换层简体结构其主要影响因素表现为转换层上部外筒的刚度、转换层设置高度和内简刚度。
对上述两类转换结构,转换层高度是影响其抗震性能的主要因素之一,转换层高度越高,转换层上下层问位移角及内力突变越明显,设计时应限制转换层设置高度。
转换层与其上层的侧向刚度比对结构抗震性能有一定影响。
对转换层位置较低的带转换层的剪力墙结构,控制侧向刚度比可以控制转换层附近的层问位移角及内力突变。
对于带转换层的剪力墙结构或简体结构,可采取以下措施强化下部结构:加大简体及落地墙厚度,提高混凝土强度等级,必要时可在房屋周边增置部分剪力墙、壁式框架或楼梯间筒体,提高抗震能力;可采取以下措施弱化上部:不落地剪力墙开洞、开口、减小墙厚等。
5 施工后浇带的施工技术在高层建筑物中,由于功能和造型的需要,往往把高层主楼与低层裙房连在一起,裙房包围了主楼的大部分。
从传统的结构观点看,希望将高层与裙房脱开,这就需要设变形缝;但从建筑要求看又不希望设缝。
因为设缝会出现双梁、双柱、双墙,使平面布局受局限,因此施工后浇带法便应运而生。
一般高层主楼与低层裙房的基础同时施工,这样回填土后场地平整,便于上部结构施工。
对于上部结构,无论是高层主楼与低层裙房同时施工,还是先施工高层后施工低层,同样要按施工图预留施工后浇带。
对高层主楼与低层裙房连接的基础梁、上部结构的梁和板,要预留出施工后浇带,待主楼与裙房主体完工后,再用微膨胀混凝土将它浇筑起来,使两侧地梁、上部梁和板连接成一个整体。
这样做的目的是为了把高层与低层的差异沉降放过一部分,因为高层主楼完成之后,一般情况下,其沉降量已完成最终沉降量的60%~80%,剩下的沉降量就小多了。
这时再补齐施工后浇带混凝土,二者差异沉降量就较小,这部分差异沉降引起的结构内力,可由不设永久变形缝的结构承担。
对于施工后浇收缩带,宜在主体结构完工两个月后浇筑混凝土,这时估计混凝士收缩量已完成60%以上。
施工后浇带的位置宜选在结构受力较小的部位,一般在梁、板的变形缝反弯点附近,此位置弯矩不大,剪力也不大:也可选在梁、板的中部,弯矩虽大,但剪力很小。