课程设计报告( 2015-- 2016年度第2学期)名称:过程控制系统题目:单回路控制系统参数整定院系:班级:学号:学生姓名:指导教师:设计周数:第十七周成绩:日期:2016年6月23日《过程控制系统》课程设计任务书一、目的与要求1.掌握单回路控制系统整定方法;2.掌握PID参数对控制品质影响规律;3.运用相应软件开发单回路控制系统整定程序。
二、主要内容1.学习基于被控对象模型的单回路控制系统参数整定方法;2.开发单回路控制系统PID参数整定程序;3.寻找不同PID参数对控制品质影响规律。
三、进度计划四、设计成果要求1.阐明基于被控对象模型的单回路控制系统参数整定方法的基本原理;2.完整的、可运行的单回路控制系统PID参数整定程序;3.验证整定的PID参数下的控制效果,给出控制曲线图,同时给出其它PID参数下的控制曲线图,总结不同PID参数对控制品质影响规律。
五、考核方式1.设计报告;2.设计答辩。
二、设计(实验)正文1.学习基于被控对象模型的单回路控制系统参数整定方法;1)经验法内容:经验法实际是一种试凑法,是在生产实践中总结出来的参数整定法,该法在现场中得到了广泛的应用。
利用经验法对系统的参数进行整定时,首先根据经验设置一组调节器参数,然后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程;若调节过程不满足要求,则修改调节器参数,再作阶跃扰动试验,观察调节过程;反复上述试验,直到调节过程满意为止。
实验步骤:(1) 首先将调节器的积分时间Ti置最大,微分时间Td置最小,根据经验设置比例带δ的数值,完成后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变比例带δ的值,重复上述试验,直到满意为止;(2) 将调节器的积分时间Ti由最大调整到某一值,由于积分作用的引入导致系统的稳定性下降,因而应将比例带适当增大,一般为纯比例作用的1.2倍。
系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变积分时间Ti的值,重复上述试验,直到满意为止;(3) 将调节器的微分时间由小到大调整到某一数值,系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,修改微分时间重复试验,直到满意为止;2)临界比例带法内容:临界比例带法又称边界稳定法,首先将调节器设置成纯比例调节器,然后系统闭环投入运行,将比例带由大到小改变,观察系统输出,直到系统产生等幅振荡为止。
记下此状态下的比例带数值(即为临界比例带δk)和振荡周期Tk,然后根据经验公式计算调节器的其它参数。
实验步骤:(1) 将调节器的积分时间Ti置于最大,微分时间Td置最小,即Ti→∞,Td=0;置比例带δ为一个较大的值;(2) 系统闭环投入运行,待系统稳定后调整比例带δ的数值直到出现等幅振荡。
记录并计算临界状态下临界比例带δcr和振荡周期Tcr,根据表2-1计算调节器的参数;(3)根据δcr和Tcr,由计算公式求得控制器的各个参数。
(4) 将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。
临界比例带法计算公式:3)衰减曲线法内容:衰减曲线法是在临界比例带法的基础上发展起来的,它既不象经验法那样要经过大量的试凑过程,也不象临界比例带法那样要求系统产生临界振荡过程。
它是利用比例作用下产生的4:1衰减振荡(ψ=0.75)过程时的调节器比例带δs及衰减周期Ts,或10:1衰减振荡(ψ=0.9)过程时的调节器比例带δs及过程上升时间tr,根据经验公式确定调节器的参数。
实验步骤:(1) 置调节器参数Ti→∞,Td=0,比例带δ为一个较大的值,将系统投入闭环运行;(2) 待系统稳定后作阶跃扰动试验,观察控制过程。
若ψ大于要求的数值,则逐步减小比例带δ并重复试验,直到出现ψ=0.75或ψ=0.9的控制过程为止,并记下此时的比例带δs;(3) 根据控制过程曲线求取ψ=0.75衰减周期Ts或ψ=0.9时的上升时间tr;(4) 计算调节器的参数δ、Ti、Td。
(5) 按计算结果设置调节器的参数,作阶跃扰动试验,观察调节过程,适当修改调节参数,直到满意为止。
4)响应曲线法内容:响应曲线法则是根据对象的阶跃响应曲线,求得对象的一组特征参数ε、τ(无自平衡能力的对象)或ε、ρ、τ(有自平衡能力的对象),然后按公式计算调节器的整定参数。
2.采用临界比例带法,开发单回路控制系统PID 参数整定程序。
1).PID 控制原理常规PID 控制系统主要由PID 控制器和被控对象组成。
PID 控制器是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差e(t),将偏差按比例、积分和微分通过线性组合构成控制量u(t),对被控对象进行控制。
控制器的输出和输入之间的关系可描述为:式中,P K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。
2)MATLAB 编程实现 设被控对象的数学模型为反馈环节为单位负反馈。
(1)置调节器参数Ti →∞,Td =0,比例带δk 为一个较大的值,将系统投入闭环运行; (2)系统闭环投入运行,待系统稳定后调整比例带δk 的数值直到出现等幅振荡。
记录并计算临界状态下临界比例带δcr 和振荡周期Tcr 。
被控对象阶跃响应:G0=tf(1,[0.8,1.7,2,1]); G=feedback(G0,1); step(G)title('被控对象阶跃响应'); grid on ;127.18.01)(230+++=S S S s G0.10.20.30.40.50.60.7被控对象阶跃响应Time (seconds)A m p l i t u d e调节Kp,直至出现等幅震荡。
G0=tf(1,[0.8,1.7,2,1]); P=3.25;axis([0 25 0 1.5]); % figure; hold on G=feedback(P*G0,1); step(G) grid on;00.511.5Step ResponseTime (seconds)A m p l i t u d e记录此时δcr=1/3.25,Tcr=6.32-2.41=3.51s 。
(3)根据δcr 和Tcr,由计算公式求得控制器的各个参数。
δ= 1.7δcr=52.3%,Ti=0.5Tcr=1.775s,Td=0.125Tcr=0.44s 。
(4)将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。
整定后阶跃响应曲线:G0=tf(1,[0.8,1.7,2,1]); Kp=1.91;Ti=1.775;Td=0.44; Gc=tf(Kp*[Ti*Td,Ti,1],[Ti,0]); axis([0 25 0 1.5]); % figure; hold on G=feedback(Gc*G0,1); step(G) grid on ;05101520250.20.40.60.811.21.4Step ResponseTime (seconds)A m p l i t u d e适当调整参数,δ= 50%,Ti=2,Td=0.6s 。
0.20.40.60.811.21.4Step ResponseTime (seconds)A m p l i t u d e3). PID 控制器参数对控制性能的影响 (1)K 取不同值时的阶跃响应 G0=tf(1,[0.8,1.7,2,1]); Kp=[2:0.5:4]; Ti=2; Td=0.6; figure; hold on for i=1.9:length(Kp)Gc=tf(Kp(i)*[Ti*Td,Ti,1],[Ti,0]); G=feedback(G0*Gc,1); step(G) end grid on0246810121416180.20.40.60.811.21.4Step ResponseTime (seconds)A m p l i t u d e(2)Ti 取不同值时的阶跃响应 G0=tf(1,[0.8,1.7,2,1]); Kp=2; Ti=[1:0.5:3]; Td=0.6; t=0:0.1:20; figure; hold on for i=1:length(Ti)Gc=tf(Kp*[Ti(i)*Td,Ti(i),1],[Ti(i),0]); G=feedback(G0*Gc,1); step(G) end grid on00.511.5Step ResponseTime (seconds)A m p l i t u d e(3)Td 取不同值时的阶跃响应G0=tf(1,[0.8,1.7,2,1]); Kp=2; Ti=2; Td=[0.2:0.2:1.0]; t=0:0.1:20; figure; hold on for i=1:length(Td)Gc=tf(Kp*[Ti*Td(i),Ti,1],[Ti,0]); G=feedback(G0*Gc,1); step(G) end grid on0.20.40.60.811.21.4Step ResponseTime (seconds)A m p l i t u d e三、课程设计总结或结论PID控制器参数对控制性能的影响1)比例系数比例系数加大,偏差越小,但会引起被调量的来回波动,造成系统不稳定。
比例系数越小,可以使被调量变化平稳甚至没有超调,但稳态偏差会很大,而且调节时间较长。
2)积分时间常数积分时间常数太小会降低系统的稳定性,增大系统的振荡次数。
但是可以消除就静态误差。
3)微分时间常数微分控制作用只对动态过程起作用,而对稳态过程没有影响。
适当的微分作用可起到减小动态偏差,缩短控制过程时间的作用。
从PID控制器的控制效果看出要取得较好的控制效果,就必须合理的选择控制器的参数。
总之,比例控制主要用于偏差的“粗调”,保证控制系统的“稳”;积分控制主要用于偏差的“细调”,保证控制系统的“准”;微分控制主要用于偏差的“细调”,保证控制系统的“快”。
四、参考文献[1] 刘禾,白焰,李新利,《火电厂热工自动控制技术及应用》,中国电力出版社,2009。