当前位置:文档之家› 管道阻力损失计算

管道阻力损失计算

(1)比摩阻法

称Rm为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:
(6-1-13)
为了便于工程设计计算,人们对Rm的确定已作出了线解图,设计时只需根据管风 量、管径和管壁粗糙度由线解图上即可查出Rm值,这样就很容易由上式算出摩擦阻力。
(2)综合摩擦阻力系数法
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制
成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、 阻力四个参数中的任意两个, 即可利用线解图求得其余的两个参数。线解图是按过渡区 的入值,在压力B0=101.3kPa、温度t0=20C、宽气密度p0=1204kg/m3、运动粘度v0=15.06 >10—6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用 条件下上述条件不相符时,应进行修正。
入擦阻力系数;
v――风秘空气的平均流速,m/s;
P――气的密度,kg/m3;
l――风管长度,m;
Rs――风管的水力半径,m;
f——管道中充满流体部分的横断面积,m2;
P——湿周,在通风、空调系统中即为风管的周长,m;
D——圆形风管直径,m。
摩擦阻力系数入与空气在风管的流动状态和风管管壁的粗糙度有关。在通风和空调
(1)密度和粘度的修正
(6-1-5)
式中Rm——实际的单位长度摩擦阻力,Pa/m;
Rmo——图上查出的单位长度摩擦阻力,Pa/m;
p――际的空气密度,kg/m3;
v——实际的空气运动粘度,m2/s。
(2)空气温度和大气压力的修正
(6-1-6)
式中Kt――温度修正系数。
KB―― 大气压力修正系数。
(6-1-7)
系统中, 薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通 常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流 动状态才属于粗糙区。 计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用围较 大,在目前得到较广泛的采用:
(6-1-4)
式中K——风管壁粗糙度,mm;
管道的阻力计算
风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力; 另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻
力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。
由于通风、空调系统中空气的流动都处于自模区,局部阻力系数只取决于管件的形状, 一般不考虑相对粗糙度和雷诺数的影响。
局部阻力在通风、空调系统中占有较大比例,在设计时应加以注意,为了减小局部 阻力,通常采取以下措施:
直管臥摩擦齟力为主,弯头处J5部阻力大
图6-1-1直管与弯管
(一)摩擦阻力
1•圆形管道摩擦阻力的计算
根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1)
对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2)
圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3)
以上各式中
(6-1-12)
必须指出,利用当量直径求矩形风管的阻力,要注意其对应关系:采用流速当量直 径时,必须用矩形风管中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风 管中的空气流量去查出阻力。用两种方法求得的矩形风管单位长度摩擦阻力是相等的。
3.摩擦阻力的转换计算式
在实际设计计算中,一般将上述摩擦阻力计算式作一定的变换,使其变为更直观的表 达式.目前有如下两种变换方式
式中Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表6-1-1各种材料的粗糙度K
风ቤተ መጻሕፍቲ ባይዱ材料
粗糙度(mm)
薄钢板或镀锌薄钢板
0.15
塑料板
0.01
矿渣石膏板
1.0
矿渣混凝土板
1.5
胶合板
1.0
砖砌体
3
混凝土
1
木板
0.2
2.矩形风管的摩擦阻力计算
上述计算是按圆形风管得出的,要进行矩形风管计算,需先把矩形风管断面尺寸折 算成相当的圆形风管直径, 即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻 力。
管风速,L为管风量,f为管道断面积。将代入摩擦阻力计算式:
后,

则摩擦阻力计算式变换为下列表达式:
(6-1-14)
称Km为综合摩擦阻力系数,N S2/m8。
采用 计算式更便于管道系统的分析及风机的选择,因此,在管网系统运行分析与调 节计算时,多采用该计算式。
(二)局部阻力的计算 当空气流过断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的
管件(弯头)和流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局 部阻力。
局部阻力按下式计算
(6-1-15)
式中——局部阻力系数。
局部阻力系数一般用实验方法确定。实验时先测出管件前后的全压差(即局部阻力
Z),再除以与速度v相应的动压,求得局部阻力系数值。有的还整理成经验公式。计 算局部阻力时,必须注意值所对应的气流速度。
所谓“当量直径 ”,就是与矩形风管有相同单位长度摩擦阻力的圆形风管直径,它有 流速当量直径和流量当量直径两种。
(1)流速当量直径 假设某一圆形风管中的空气流速与矩形风管中的空气流速相等, 并且两者的单位长 度摩擦阻力也相等, 则该圆风管的直径就称为此矩形风管的流速当量直径, 以Dv表示 根据这一定义,从公式(6-1-1)可以看出,圆形风管和矩形风管的水力半径必须相等。
圆形风管的水力半径
矩形风管的水力半径


(6-1-11)
Dv称为边长为a>b的矩形风管的流速当量直径。
(2)流量当量直径
设某一圆形风管中的空气流量与矩形风管的空气流量相等, 并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以DL表示。根据推 导,流量当量直径可近似按下式计算。
式中t――实际的空气温度,C
6-1-8
式中B——实际的大气压力,kPa。
(3)管壁粗糙度的修正
在通风空调工程中,常采用不同材料制作风管,各种材料的粗糙度K见表6-1-1当风管管壁的粗糙度K工0.15mm时,可按下式修正。
Rm=KrRmo Pa/m(6-1-9)
Kr=(Kv)0 .25(6-1-10)
相关主题