当前位置:文档之家› 以太网透明传输协议

以太网透明传输协议

以太网透明传输协议

本文介绍以太网透明传输协议内容,让用户了解在串口转以太网协议上如何实现串口数据内容到以太网数据内容转化。

1.以太网透明传输的概念

通信协议是一种分层结构的,根据ISO的7层模型通信协议分为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。如果用户想通过卓岚ZLSN模块的以太网透明传输协议实现串口数据和以太网数据的转发,应用模型如图1所示。

图1. 以太网透明传输演示图

所谓以太网网络透明传输协议(简称为“以太网透传”)是指网络协议的应用层数据和串口协议的用户数据完全一致,不存在格式转化问题,形象地比喻为“透明传输”。比如网络数据应用层数据内容为字符“a”,那么串口协议的用户层数据也是“a”,用户电路板收到的数据也是字符“a”。

2.如何使用透明传输协议

那么用户数据是如何从计算机传给用户串口板的呢?这首先需要了解网络协议和串口协议的区别。

1.网络(TCP/IP)协议分为以太网层、IP层、TCP或UDP层、用户数据层。以太网层表示了网络通信介质,例如光纤、无线、有线以太网线。IP层中的关键点是包含了IP地址,IP地址是每个网络设备的地址。TCP或者UDP层的关键点是端口,端口用于区分一个IP地址下的多个应用程序。用户数据层携带用户需要传输的数据。

2.相对而言串口协议,没有IP层和TCP层这两层。

这里有两个问题:

1.串口协议如何弥补网络协议缺失的IP层和TCP层?实际上在ZLSN模块中已经保存了IP层、TCP层的关键点——IP地址和端口。每个ZLSN模块都具有一个可以设定的IP地址,同时也有一个TCP或者UDP的端口,这样计算机就可以通过这个“IP+端口”将网络数据发送给ZLSN模块。同样地ZLSN模块也保存了目的计算机的IP和端口,这样也可以将数据发送给计算机。联网模块内部保存的IP和端口解决了串口协议中没有IP和端口的问题。

2.如何使用透明传输协议?

2.1对于计算机程序设计人员来说调用Socket API函数send()和recv()即可发送网络层数据,例如执行send("a")就可以将字符“a”发送到用户串口电路板。用户调用recv(buf)即可将串口电路板发送的数据接收到缓冲区buf中。

2.2另外用户也可以使用卓岚网络调试工具——SocketDlgTest。通过该工具用户可以类似串口调试工具,进行发送和接受应用层数据。

2.3更为简单的方式是用户可以使用虚拟串口技术(ZLVircom程序)将网络端也模拟为一个串口,计算机还是用串口进行收发。

3.其它转化协议

除了“以太网透明传输协议”以外,ZLSN模块也支持更为复杂的协议,例如“Modbus TCP转ModbusRTU协议”,“Realcom协议”等,不同的转化协议在特定的应用中有各自的用途,但是“以太网透明传输协议”是最为简单易用的协议。

实验五 IEEE 802.3协议分析和以太网

郑州轻工业学院本科 实验报告 题目:IEEE 802.3协议分析和以太网学生姓名:王冲 系别:计算机与通信工程学院 专业:网络运维 班级:网络运维11-01 学号:541107110123 指导教师:熊坤 2014 年10 月28 日

实验五IEEE 802.3协议分析和以太网 一、实验目的 1、分析802.3协议 2、熟悉以太网帧的格式 二、实验环境 与因特网连接的计算机网络系统;主机操作系统为windows;Ethereal、IE等软件。 三、实验步骤 1.俘获并分析以太网帧 (1)清空浏览器缓存(在IE窗口中,选择“工具/Internet选项/删除文件”命令)。

(2)启动Ethereal,开始分组俘获。 (3)在浏览器的地址栏中输入: http://biz.doczj.com/doc/53191000.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。

(4)停止分组俘获。首先,找到你的主机向服务器http://biz.doczj.com/doc/53191000.html,发送的HTTP GET报文的分组序号,以及服务器发送到你主机上的HTTP 响应报文的序号。其中,窗口大体如下。 选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下

(5)选择包含HTTP GET 报文的以太网帧,在分组详细信息窗口中,展开EthernetII 信息部分。根据操作,回答1-5 题 (6)选择包含HTTP 响应报文第一个字节的以太网帧,根据操作,回答6-10 题2.ARP (1)利用MS-DOS命令:arp 或c:\windows\system32\arp查看主机上ARP缓存的内容。根据操作,回答11题。 (2)利用MS-DOS命令:arp -d * 清除主机上ARP缓存的内容。 (3)清除浏览器缓存。 (4)启动Ethereal,开始分组俘获。 (5)在浏览器的地址栏中输入: http://biz.doczj.com/doc/53191000.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。 (6)停止分组俘获。选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下。根据操作,回答12-15题。 四、实验报告内容

以太网协议

以太网协议 历史上以太网帧格式有五种: 1 E thernet V1:这是最原始的一种格式,是由Xerox P ARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在 1980年由DEC,Intel和Xerox标准化形成E thernet V1标准; 2 E thernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。Cisco名称为:ARP A。 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DE C,Intel和Xerox在1982年公布其标准,主要更改了E thernet V1的电气特性和物理接口,在帧格式上并无变化;E thernet V2出现后迅速取代E thernet V1成为以太网事实标准;E thernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 0835 RARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是E thernet V2(ARP A)类型了,而是下面讲到的三种802.3帧类型之一;E thernet可以支持TCP/IP,Novell IP X/SP X,Apple Talk P hase I等协议;RFC 894定义了IP 报文在E thernet V2上的封装格式; 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(P reamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的 作用是使接收节点进行同步并做好接收数据帧的准备。 ——P R:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位 是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF, 则是广播地址,广播地址的数据可以被任何网卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址,同样是6个字节. ----TYP E:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP包,8137H为IP X/SP X包,(小于0600H的值是用于IEEE802 的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。 (14字节为DA,SA,TYP E)

以太网采用的通信协议

竭诚为您提供优质文档/双击可除以太网采用的通信协议 篇一:以太网基础协议802.3介绍 802.3 802.3通常指以太网。一种网络协议。描述物理层和数据链路层的mac子层的实现方法,在多种物理媒体上以多种速率采用csma/cd访问方式,对于快速以太网该标准说明的实现方法有所扩展。 dixethernetV2标准与ieee的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合dixethernetV2标准的局域网。 早期的ieee802.3描述的物理媒体类型包括:10base2、10base5、10baseF、10baset和10broad36等;快速以太网的物理媒体类型包括:100baset、100baset4和100basex等。 为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制llc(logicallinkcontrol)子层 媒体接入控制mac(mediumaccesscontrol)子层。

与接入到传输媒体有关的内容都放在mac子层,而llc 子层则与传输媒体无关,不管采用何种协议的局域网对llc 子层来说都是透明的。 由于tcp/ip体系经常使用的局域网是dixethernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层llc(即802.2标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有mac协议而没有llc协议。 mac子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当llc子层请求发送数据帧时,发送数据封装部分开始按mac子层的帧格式组帧: (1)将一个前导码p和一个帧起始定界符sFd附加到帧头部分; (2)填上目的地址、源地址、计算出llc数据帧的字节数并填入长度字段len; (3)必要时将填充字符pad附加到llc数据帧后; (4)求出cRc校验码附加到帧校验码序列Fcs中; (5)将完成封装后的mac帧递交miac子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧

以太网用什么协议-

竭诚为您提供优质文档/双击可除 以太网用什么协议? 篇一:以太网协议报文格式 tcp/ip协议族 ip/tcp telnet和Rlogin、Ftp以及smtpip/udp dns、tFtp、bootp、snmp icmp是ip协议的附属协议、igmp是internet组管理协议 aRp(地址解析协议)和RaRp(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换ip层和网络接口层使用的地址。 1、 以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和mtu值。但在同种物理媒体上都可同时存在。 标签协议识别符(tagprotocalidentifier,tpid):一组16位元的域其数值被设定在0x8100以用来辨别某个 ieee802.1q的帧为已被标签的,而这个域所被标定位置与乙

太形式/ 长度在未标签帧的域相同,这是为了用来区别未标签的帧。优先权代码点(prioritycodepoint,pcp):以一组3位元的域当作优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 标准格式指示(canonicalFormatindicator,cFi):1位 元的域。若是这个域的值 为1,则mac地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,cFi用来做为两者的相容。若帧在乙太端中接收资料则cFi 的值须设为1,且这个端口不能与未标签的其他端口桥接。虚拟局域网识别符(Vlanidentifier,Vid):12位元的域,用来具体指出帧是属于 哪个特定Vlan。值为0时,表示帧不属于任何一个Vlan;此时,802.1q标签代表优先权。16位元的值0x000和0xFFF 为保留值,其他的值都可用来做为共4094个Vlan的识别符。在桥接器上,Vlan1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(destination)与源(source)之48位元地址,18位元的(triple-tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFc894)

以太网协议的规则

以太网协议 2007-08-25 16:45:54| 分类:默认分类|字号订阅 历史上以太网帧格式有五种: 1 Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准; 2 Ethernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。Cisco 名称为:ARPA。 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel和Xerox 在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 0835 RARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;Ethernet可以支持TCP/IP,Novell IPX/SPX, 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 ——PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M 的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位是11而不是10.

以太网MAC协议

以太网MAC协议 1位/字节顺序的表示方法 1.1位序 严格地讲,以太网对于字节中位的解释是完全不敏感的。也就是说,以太网并不需要将一个字节看成是一个具有8个比特的数字值。但是为了使位序更容易描述以及防止不兼容,以太网和多数数据通信系统一样,传输一个字节的顺序是从最低有效位(对应于20的数字位)到最高有效位(对应于27的数字位)。另外习惯上在书写二进制数字时,最低值位写在最左面,而最高值位写在最右面。这种写法被称为“小端”形式或正规形式。一个字节可以写成两个十六进制数字,第一个数字(最左边)是最高位数字,第二个(最右边)是最低位数字。 1.2字节顺序 如果所有有定义的数据值都是1字节长,则在介绍完位序后就可以停止了。但是很不幸事实并非如此,所以我们必须面对长于单个字节的域,这些域是以从左到右排列的,以连接符“-”分隔的字节串表示。每个字节包含两个十六进制数字。 多字节域的各个字节按第一个到最后一个(即从左到右)的顺序发送,而每个字节采用小端位序传送。例如,6字节域: 08-00-60-01-2C-4A 将按以下顺序(从左向右读)串行地发送: 0001 0000-0000 0000-0000 0110-1000 0000-0011 0100-0101 0010 2以太网地址 地址是一个指明特定站或一组站的标识。以太网地址是6字节(48比特)长。图1说明了以太网地址格式。 图1 以太网地址格式 在目的地址中,地址的第1位表明该帧将要发送给单个站点还是一组站点。在源地址中,第1位必须为0。 站地址要唯一确定是至关重要的,一个帧的目的地不能是模糊的。地址的唯

一性可以是: ●局限于本网络内。保证地址在某个特定LAN中是唯一的,但不能保证 在相互连接的LAN中是唯一的。当使用局部唯一地址时,要求网络管 理员对地址进行分配。 ●全局的。保证地址在所有的LAN中,在任何时间,以及对于所有的技 术都是唯一的,这是一个强大的机制,因为: (1)使网络管理员不必为地址分配而烦恼; (2)使得站点可以在LAN之间移动,而不必重新分配地址; (3)可以实现数据链路网桥/交换机。 全局唯一地址以块为单位进行分配,地址块由IEEE管理。一个组织从IEEE 获得唯一的地址块(称为OUI),并可用该地址块创建224个设备。那么保证该地址块中地址(最后3个字节)的唯一性就是制造商的责任。 地址中的第2位指示该地址是全局唯一还是局部唯一。除了个别情况,历史上以太网一直使用全局唯一地址。 3以太网数据帧格式 图2 基本的以太网帧格式及传输次序 图2显示了以太网MAC帧各个字段的大小和内容以及传输次序。 该格式中每个字段的字节次序是先传输的字节在左,后传输的字节在右。在每个字节中的位次序正好相反,低位在左,高位在右。字节次序和位的次序通常用于FCS之外的所有字段。FCS将作为一个特殊的32位字段(最高位在左),而不是4个单独的字节。 3.1前导码(Preamble)和帧起始定界符(SFD) 前导码包含8个字节。前7个字节(56位)的职位0x55,而最后一个字节为帧起始定界符,其值为0xD5。结果前导码将成为一个由62个1和0间隔(10101010---)的串行比特流,最后2位是连续的1,表示数据链路层帧的开始。其作用就是提醒接收系统有帧的到来,以及使到来的帧与输入定时进行同步。在DIX以太网中,前导码被认为是物理层封装的一部分,而不是数据链路层的封装。 3.2地址字段 每个MAC帧包含两个地址字段:目标地址(Destination Address)和源地址(Source Address)。目的地址标识了帧的目的地站点,源地址标识了发送帧的站。DA可以是单播地址(单个目的地)或组播地址(组目的地),SA通常是单播地

以太网协议,802

竭诚为您提供优质文档/双击可除 以太网协议,802 篇一:以太网基础协议802.3介绍 802.3 802.3通常指以太网。一种网络协议。描述物理层和数据链路层的mac子层的实现方法,在多种物理媒体上以多种速率采用csma/cd访问方式,对于快速以太网该标准说明的实现方法有所扩展。 dixethernetV2标准与ieee的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合dixethernetV2标准的局域网。 早期的ieee802.3描述的物理媒体类型包括:10base2、10base5、10baseF、10baset和10broad36等;快速以太网的物理媒体类型包括:100baset、100baset4和100basex等。 为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制llc(logicallinkcontrol)子层 媒体接入控制mac(mediumaccesscontrol)子层。

与接入到传输媒体有关的内容都放在mac子层,而llc 子层则与传输媒体无关,不管采用何种协议的局域网对llc 子层来说都是透明的。 由于tcp/ip体系经常使用的局域网是dixethernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层llc(即802.2标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有mac协议而没有llc协议。 mac子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当llc子层请求发送数据帧时,发送数据封装部分开始按mac子层的帧格式组帧: (1)将一个前导码p和一个帧起始定界符sFd附加到帧头部分; (2)填上目的地址、源地址、计算出llc数据帧的字节数并填入长度字段len; (3)必要时将填充字符pad附加到llc数据帧后; (4)求出cRc校验码附加到帧校验码序列Fcs中; (5)将完成封装后的mac帧递交miac子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧

以太网基础协议802.3介绍

802.3 802.3 通常指以太网。一种网络协议。描述物理层和数据链路层的MAC子层的实现方法,在多种物理媒体上以多种速率采用CSMA/CD访问方式,对于快速以太网该标准说明的实现方法有所扩展。 DIX Ethernet V2 标准与 IEEE 的 802.3 标准只有很小的差别,因此可以将 802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合 DIX Ethernet V2 标准的局域网。 早期的IEEE 802.3描述的物理媒体类型包括:10Base2、10Base5、10BaseF、10BaseT和10Broad36等;快速以太网的物理媒体类型包括:100 BaseT、100Base T4和100BaseX等。 为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制 LLC (Logical Link Control)子层 媒体接入控制 MAC (Medium Access Control)子层。 与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关,不管采用何种协议的局域网对 LLC 子层来说都是透明的。 由于TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有 MAC 协议而没有 LLC 协议。 MAC子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当LLC子层请求发送数据帧时,发送数据封装部分开始按MAC 子层的帧格式组帧: (1)将一个前导码P和一个帧起始定界符SFD附加到帧头部分; (2)填上目的地址、源地址、计算出LLC数据帧的字节数并填入长度字段LE N; (3)必要时将填充字符PAD附加到LLC数据帧后; (4)求出CRC校验码附加到帧校验码序列FCS中; (5)将完成封装后的MAC帧递交MIAC子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧的目的地址字段,以确定本站是否应该接受该帧,如地址符合,则将其送到LLC子层,并进行差错校验。 IEEE802.3

以太网协议报文格式

T C P/I P协议族

IP/TCP Telnet和R login、FTP以及SMTP IP/UDP DNS 、TFTP、BOOTP、SNMP ICMP是IP协议的附属协议、IGMP是Internet组管理协议 ARP(地址解析协议)和RARP(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换I P层和网络接口层使用的地址。 1、以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和MTU值。但在同种物理媒体上都可同时存在。

?标签协议识别符(Tag Protocal Identifier, TPID): 一组16位元的域其数值被设定在0x8100以用来辨别某个IEEE 802.1Q的帧为已被标签的,而这个域所被标定位置与乙太形式/长度在未标签帧的域相同,这是为了用来区别未标签的帧。 ?优先权代码点(Priority Code Point, PCP): 以一组3位元的域当作IEEE 802.1p 优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 ?标准格式指示(Canonical Format Indicator, CFI): 1位元的域。若是这个域的值为1,则MAC地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,CFI用来做为两者的相容。若帧在乙太端中接收资料则CFI的值须设为1,且这个端口不能与未标签的其他端口桥接。?虚拟局域网识别符(VLAN Identifier, VID): 12位元的域,用来具体指出帧是属于哪个特定VLAN。值为0时,表示帧不属于任何一个VLAN;此时,802.1Q标签代表优先权。16位元的值0x000和0xFFF为保留值,其他的值都可用来做为共4094个VLAN的识别符。在桥接器上,VLAN1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(Destination)与源(Source)之48位元地址,18位元的三重标记(Triple-Tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFC 894) IEEE 802.2/802.3(RFC 1042)

实验二、以太网帧格式与ARP协议分析

实验二、以太网帧格式与ARP协议分析 实验类型: 验证类实验实验课时: 2学时 实验时间和地点: 4月25日星期三、第一大节(8:00-10:00),计算机中心 学号:200911715 姓名:张亚飞 一、实验目的 验证以太网帧格式,理解ARP协议的工作原理。 二、实验准备 提前下载EtherPeek(http://biz.doczj.com/doc/53191000.html,/soft/17558.html),学习EtherPeek的使用,见《EtherPeek使用说明(部分)》;会用“ipconfig –all”查看本机IP地址。 三、实验步骤 假设邻座同学的主机为A,IP地址为w.x.y.z,在Windows下运行EtherPeek,新建一个Filter,只捕获本机与w.x.y.z之间的IP分组。 1.以太网帧格式分析 开始捕获,然后在命令行执行ping w.x.y.z,再停止捕获;分析捕获的IP分组,记录以太网帧头各字段以及FCS字段的值和含义(如表1),并与802.3帧格式进行比较。 2.ARP协议分析 (1)进入DOS仿真窗口,执行“arp – a”查看本机的ARP缓存内容,若有w.x.y.z的记录,执行“arp –d w.x.y.z”删除该记录。注:执行“arp -help”可知arp的各选项用法。 (2)开始捕获,然后执行“ping w.x.y.z”,停止捕获,记录并分析ARP报文各字段的含义,如表2。 表2 ARP报文格式 表2 ARP报文格式

(3)执行“arp –d w.x.y.z”清除缓存的IP-MAC记录。本机和主机A停止任何数据通信,在主机A上访问本机外的任何主机,再执行“arp – a”查看本机ARP缓存,看是否新增了主机A的IP-MAC记录,解释一下。 答:删除过之后,被删除的记录不存在缓存中了。当主机A访问本机的时候,本机的ARP 缓存中重新出现A的记录。出现这种现象的原因在于本机ARP缓存中对应该主机A的记录一开始不存在,对方发送ping并显示可以连通后,本机就可以通过ARP解析出对方的MAC 地址。 四、实验体会 以太网帧格式,理解ARP协议的工作原理。ARP -a:查看本机ARP缓存,ARP -d:清空本地ARP缓存 五、思考问题 什么时候本地arp缓存中会增加主机A的记录? 一、本机用ping测试与主机A的网络是否连通并确认联通时,会增加主机A的记录; 二、主机A用ping测试与本机的网络是否连通并确认联通时,会增加主机A的记录。

IGMP报文格式及协议分析

1、多播:用于向多个目的地址传送数据。 多播地址:地址由固定的4位1110 + 28位多播组ID构成,范围从224.0.0.0到239.255.255.255。 2、主机组:能够接收发往一个特定多播组地址数据的主机集合。一些多播组地址被IANA 确定为知名地址,他们也被当作永久主机组。例如:224.0.0.1代表“该子网内的所有系统组”,224.0.0.2代表“该子网内的所有路由器组”。多播地址224.0.1.1用作网络时间协议NTP。 3、多播组地址到以太网地址的转换 IANA(互联网数字分配机构)拥有一个以太网地址块,即高位24bit为00:00:5e,这意味着该地址块所拥有的地址范围从00:00:5e:00:00:00到00:00:5e:ff:ff:ff。IANA将其中的一半分配为多播地址。为了指明一个多播地址,任何一个以太网地址的首字节必须是01,这意味着与IP多播相对应的以太网地址范围从01:00:5e:00:00:00到01:00:5e:7f:ff:ff。 将多播地址的低23位映射到以太网地址的低23位,高25位为固定的24位的01:00:5e 加1位0。这样就从多播组ip地址得到了对应的多播组mac地址。 由于多播组地址的高5位(即1110的后5位)在映射过程中被忽略,因此每个以太网多播地址对应的多播组不是唯一的,由于地址映射不是唯一的,所有需要设备驱动程序或IP 层对数据报进行过滤。 4、IGMP:internet组管理协议 用于让一个物理网络上的所有系统知道主机当前所在的多播组。多播路由器使用IGMP 报文来记录与该路由器相连网络中组成员的变化情况,首先,主机发送加入组播组报文到组播组,为了可靠,可以采取定时发送的方式向组播组发送加入报告报文。同时组播组也会定发送查询报文,收到查询报文后回复报告报文。如果主机已经离开了组播组则在收到查询报文后不发送报告报文。IGMP被当做IP层的一部分,IGMP报文通过IP数据报进行传输。其数据格式如下: 20字节的IP首部+8字节的IGMP报文

以太网协议封装格式

字号:大中小一、以太网链路层协议封装格式 以太网数据在网络介质上传输需要遵循一定的机制,其中CSMA/CD介质访问控制机制约定了以太网在传输数据时,两帧之间需要等待一个帧间隙时间(IFG或IPG),为以太网接口提供了帧接收之间的恢复时间,该恢复时间最小值为传输96bit所花费的时间,对于10M线路,该时间为9.6uS,100M线路为960nS,1G的线路为96nS。同时以太网数据帧在传输时还需要有7byte的前导字段和1byte的定界符。因此以太网数据在传输过程中是由以下部分组成的: 7byte(前导)+1byte(定界符)+以太网数据帧+12byte(IPG)。 在全双工工作模式下,如果CSMA/CD介质访问控制机制发现传输冲突时,则会放弃当前帧发送,改为发送一个48比特的噪声帧。 其中以太网数据帧限制为最小长度为64byte,最大长度为1518byte,其格式为:6byte(目的MAC地址)+6byte(源MAC地址)+2byte(类型字段)+数据字段+4byte(FCS校验字段)。其中帧类型字段标识其后的数据类型。 这里值得注意的是区分Ethernet II帧格式和802.3帧格式的不同,我们有时可能会混用了这两个术语。 Ethernet II帧是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel和Xerox在1982年公布标准,Ethernet II可以支持TCP/IP,Novell IPX/SPX,Apple Talk Phase I等协议,其比较常见的类型字段为:0X0800(IP 帧),0X0806(ARP请求/应答帧),0X8035(PARP请求/应答帧),0X8137(Novell IPX),0X809b(Apple Talk)。RFC 894定义了IP报文在Ethernet II上的封装格式。

ARP协议的报文格式

ARP协议的报文格式 结构ether_header定义了以太网帧首部;结构arphdr定义了其后的5个字段,其信息用于在任何类型的介质上传送ARP请求和回答;ether_arp结构除了包含arphdr结构外,还包含源主机和目的主机的地址。 定义常量 #define EPT_IP 0x0800 /* type: IP */ #define EPT_ARP 0x0806 /* type: ARP */ #define EPT_RARP 0x8035 /* type: RARP */ #define ARP_HARDWARE 0x0001 /* Dummy type for 802.3 frames */ #define ARP_REQUEST 0x0001 /* ARP request */ #define ARP_REPLY 0x0002 /* ARP reply */ 定义以太网首部 typedef struct ehhdr { unsigned char eh_dst[6]; /* destination ethernet addrress */ unsigned char eh_src[6]; /* source ethernet addresss */ unsigned short eh_type; /* ethernet pachet type */ }EHHDR, *PEHHDR; 定义以太网arp字段 typedef struct arphdr { //arp首部 unsigned short arp_hrd; /* format of hardware address */ unsigned short arp_pro; /* format of protocol address */ unsigned char arp_hln; /* length of hardware address */ unsigned char arp_pln; /* length of protocol address */ unsigned short arp_op; /* ARP/RARP operation */

以太网OAM协议解析及测试关注点

以太网OAM(802.3ah)协议分析及测试关注点 1 以太网OAM简介 (3) 2 以太网OAM在网络上的应用 (3) 3 OAMPDU报文解析及工作原理 (4) 3.1 报文解析 (4) 3.2 几种最常见的OAMPDU用法: (7) 3.2.1 Information OAMPDU (7) 3.2.2 Event Notification OAMPDU (7) 3.2.3 Loopback Control OAMPDU (8) 3.3 以太网OAM工作原理: (8) 3.3.1 建立以太网OAM连接: (8) 3.3.2 链路监控 (10) 3.3.3 远端故障检测 (11) 3.3.4 远端环回 (12) 4 Feature list (13)

4.1 主要功能 (13) 4.2 工作原理 (13) 4.3 Event Notification的处理 (14) 4.4 OAMPDU报文 (16) 4.5 Local Information TLVs (17) 4.6 Remote Information TLVs (18) 4.7 Link Event TLVs (18) 4.8 Variables Descriptors and Containers (19) 5 测试关注点: (20) 5.1 概述: (20) 5.2 具体测试点: (21)

1以太网OAM简介 以太网OAM(Operations, Administration and Maintenance,操作、管理和维护) 是一种监控网络问题的工具。它工作在数据链路层,利用设备之间定时交互 OAMPDU(OAM Protocol Data Units,OAM 协议数据单元)来报告网络的状态,使网络管理员能够更有效地管理网络。 2以太网OAM在网络上的应用 随着数据业务的广泛应用,以太网在通信网络中扮演着越来越重要的作用,但是以太网与传统的SDH相比,在网络故障告警、链路质量、维护手段等方面都略逊一筹。于是国际标准化组织IEEE,先后推出了802.3ah(2004)和802.1ag(2007)两个标准化协议来强化以太网在维护、告警方面的能力。 802.3ah的以太网OAM主要是链路方面的监测和维护,是一种偏物理层的OAM,它主要应用在网络的边缘设备上(接入层),且OAMPDU报文只能转发一跳,主要用来监测链路质量、收集链路告警等。而802.1ag的以太网OAM是偏网络和应用的OAM,主要用在汇聚层和核心层上,它的OAMPDU报文能够传输多跳。它不仅能够监测链路质量、收集告警,还能够实现电信级快速倒换以及traceroute、ping等功能。在TN705/725上的MPLS OAM就部分参考了

tcpip协议报文格式

1、IP报文格式 IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧(见本章1.3节)中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。如图2-3所示: 图2-3TCP/IP报文封装 图2-4是IP头部(报头)格式:(RFC 791)。 图2-4IP头部格式 其中: ●版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100。 ●报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。 ●服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。服务类型字段声明了数据报被网络系统传输时可以被怎样处理。例如:TELNET 协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS (Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。 ●总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。

以太网帧类型速查(协议字段)

竭诚为您提供优质文档/双击可除以太网帧类型速查(协议字段) 篇一:以太网帧类型速查 以太网帧格式 目前,有四种不同格式的以太网帧在使用,它们分别是: ●ethernetii即dix2.0:xerox与dec、intel在1982年制定的以太网标准帧格式。cisco名称为: aRpa。 ●ethernet802.3raw:novell在1983年公布的专用以太网标准帧格式。cisco名称为:novell-ether。 ●ethernet802.3sap:ieee在1985年公布的 ethernet802.3的sap版本以太网帧格式。cisco名称为:sap。 ●ethernet802.3snap:ieee在1985年公布的 ethernet802.3的snap版本以太网帧格式。cisco 名称为:snap。 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图3所示。其中,前7个字节称为前同步码(preamble),内容是16进制数0xaa,最后1字节为帧起始

标志符0xab,它标识着以太 网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 图3以太网帧前导字符 除此之外,不同格式的以太网帧的各字段定义都不相同,彼此也不兼容。 3.1ethernetii帧格式 如图4所示,是ethernetii类型以太网帧格式。 图4ethernetii帧格式 ethernetii类型以太网帧的最小长度为64字节(6+6 +2+46+4),最大长度为1518字节(6+6+2+1500+4)。其中前12字节分别标识出发送数据帧的源节点mac地址和 接收数据帧的目标节点mac 地址。 接下来的2个字节标识出以太网帧所携带的上层数据类型,如16进制数0x0800代表ip协议数据, 16进制数0x809b代表appletalk协议数据,16进制数0x8138代表novell类型协议数据等。在不定长的数据字段 后是4个字节的帧校验序列(Framechecksequence,Fcs),采用32位cRc 循环冗余校验对从"目标mac地址"字段到"数据"字段的数据进行校验。

相关主题