当前位置:文档之家› 二层、三层交换技术的介绍

二层、三层交换技术的介绍

二层、三层交换技术介绍一、二层交换技术介绍二层交换机工作于OSI模型的第2层(数据链路层),故而称为二层交换机。

二层交换技术的发展已经比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC 地址与对应的端口记录在自己部的一个地址表中。

(1)当交换机从某个端口收到一个数据包,它先读取中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2)再去读取中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BUFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。

由于各个厂家采用ASIC不同,直接影响产品性能。

以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。

路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。

工作原理是在路由器的部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向哪里走,如果能从路由表中找到数据包下一步往哪里走,把链路层信息加上转发出去;如果不能知道下一步走向哪里,则将此包丢弃,然后返回一个信息交给源地址。

路由技术实质上来说不过两种功能:决定最优路由和转发数据包。

路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。

接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。

二、三层交换机介绍随着Internet的发展,局域网和广域网技术得到了广泛的推广和应用。

数据交换技术从简单的电路交换发展到二层交换,从二层交换又逐渐发展到今天较成熟的三层交换,以致发展到将来的高层交换。

三层交换技术就是:二层交换技术+三层转发技术。

它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

二层交换技术从网桥发展到VLAN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。

第二层交换技术是工作在OSI七层网络模型中的第二层,即数据链路层。

它按照所接收到数据包的目的MAC地址来进行转发,对于网络层或者高层协议来说是透明的。

它不处理网络层的IP地址,不处理高层协议的诸如TCP、UDP的端口地址,它只需要数据包的物理地址即MAC 地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。

但是,它不能处理不同IP子网之间的数据交换。

传统的路由器可以处理大量的跨越IP子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层IP数据包,三层交换技术就诞生了。

一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件叠加在局域网交换机上。

第三层交换工作在OSI七层网络模型中的第三层即网络层,是利用第三层协议中的IP包的报头信息来对后续数据业务流进行标记,具有同一标记的业务流的后续报文被交换到第二层数据链路层,从而打通源IP地址和目的IP地址之间的一条通路。

这条通路经过第二层链路层。

有了这条通路,三层交换机就没有必要每次将接收到的数据包进行拆包来判断路由,而是直接将数据包进行转发,将数据流进行交换。

其原理是:假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网。

若目的站B与发送站A在同一子网,则进行二层的转发。

若两个站点不在同一子网,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出ARP(地址解析)封包,而“缺省网关”的IP地址其实是三层交换机的三层交换模块。

当发送站A对“缺省网关”的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。

否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。

从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。

由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。

三层交换机可以根据其处理数据的不同而分为纯硬件和纯软件两大类。

(1)纯硬件的三层技术相对来说技术复杂,成本高,但是速度快,性能好,带负载能力强。

其原理是,采用ASIC芯片,采用硬件的方式进行路由表的查找和刷新。

当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发,否则将数据送至三层引擎。

在三层引擎中,ASIC芯片查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机,得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。

(2)基于软件的三层交换机技术较简单,但速度较慢,不适合作为主干。

其原理是,采用CPU用软件的方式查找路由表。

当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发否则将数据送至CPU。

CPU 查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。

因为低价CPU处理速度较慢,因此这种三层交换机处理速度较慢。

宽带IP网络建设成为热点,下面以适合定位于接入层或中小规模汇聚层的第三层交换机产品为例,介绍一些三层交换机的具体技术。

在市场上的主流接入第三层交换机,主要有Cisco的Catalyst 2948G-L3、Extreme 的Summit24和AlliedTelesyn的Rapier24等,这几款三层交换机产品各具特色,涵盖了三层交换机大部分应用特性。

当然在选择第三层交换机时,用户可根据自己的需要,判断并选择上述产品或其他厂家的产品,如北电网络的Passport/Acceler系列、原Cabletron的SSR系列(在Cabletron 一分四后,大部分SSR三层交换机已并入Riverstone公司)、Avaya的Cajun M系列、3Com的Superstack3 4005系列等。

此外,国产网络厂商神州数码网络、TCL网络、广电应确信、紫光网联、首信等都已推出了三层交换机产品。

下面就其中三款产品进行介绍,使您能够较全面地了解三层交换机,并针对自己的情况选择合适的机型。

Cisco Catalyst 2948G-L3交换机结合业界标准IOS提供完整解决方案,在版本12.0(10)以上全面支持IOS访问控制列表ACL,配合核心Catalyst 6000,可完成端到端全面宽带城域网的建设(Catalyst 6000使用MSFC模块完成其多层交换服务,并已停止使用RSM路由交换模块,IOS版本6.1以上全面支持ACL)。

Extreme公司三层交换产品解决方案,能够提供独特的以太网带宽分配能力,切割单位为500kbps或200kbps,服务供应商可以根据带宽使用量收费,可实现音频和视频的固定延迟传输。

AlliedTelesyn公司Rapier24三层交换机提供的PPPoE特性,丰富和完善了用户认证计费手段,可适合多种接入网络,应用灵活,易于实现业务选择,同时又保护用户的已有投资,另可配合NAT(网络地址转换)和DHCP的Server等功能,为许多服务供应商看好。

总之,三层交换机从概念的提出到今天的普及应用,虽然只历经了几年的时间,但其扩展的功能也不断结合实际应用得到丰富。

随着ASIC硬件芯片技术的发展和实际应用的推广,三层交换的技术与产品也会得到进一步发展。

三层交换技术可以在以太网交换机和ATM交换机中实现,其实现的原理一样,但实现的复杂程度稍有不同,封装方式不同。

基于不同的考虑,各公司的产品在具体的实现上略有不同,采用的芯片也有不同,有的公司采用ASIC,有的采用RISC,有的采用网络处理器等等。

当然,采用不同等级的芯片,对数据包的转发效率,网络流量的控制和三层交换机的整体性能是有影响的。

在当今信息高速发展过程中,三层交换机广泛地应用到了一些大型企业网和教育网中,尤其是ATM交换机在网络建设中更为火爆,广泛地深入到了网络的骨干层、汇聚层和接入层。

建立大容量的三层交换系统是当今网络设备制造商的当务之急,中兴通讯公司的宽带网络产品ZXB10系列正是基于这种考虑而研制出的,具有三层交换技术业务的ZXB10系列包括四个品种,即ZXB10-BX:宽带核心交换机;ZXB10-AX:宽带接入交换机; ZXB10-MX:宽带业务复用器;ZXB10-SX:宽带业务接入器,均属于ATM交换机系列。

可以看出,二层交换机主要用在小型局域网中,机器数量在二、三十台以下,这样的网络环境下,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低廉价格为小型网络用户提供了很完善的解决方案。

在这种小型网络中根本没必要引入路由功能从而增加管理的难度和费用,所以没有必要使用路由器,当然也没有必要使用三层交换机。

三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,所以适用于大型局域网,为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划他成一个一个的小局域网,也就是一个一个的小网段,这样必然导致不同网段之间存在大量的互访,单纯使用二层交换机没办法实现网间的互访而单纯使用路由器,则由于端口数量有限,路由速度较慢,而限制了网络的规模和访问速度,所以这种环境下,由二层交换技术和路由技术有机结合而成的三层交换机就最为适合。

相关主题